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ABSTRACT. We introduce an iterative algorithm for split equality fixed
point and null point problem (SEFPNPP) for Lipschitzian quasi-pseudo-
contractive mappings and maximal monotone operators which includes
split equality feasibility problem, split equality fixed problem, split equal-
ity null point problem and other problems related to fixed point problem.
Moreover, we establish strong convergence results in real Hilbert spaces
under some suitable conditions and reduce our main result to above-
mentioned problems. Finally, we apply the study to split equality feasi-
bility problem (SEFP), split equality equilibrium problem (SEEP), split
equality variational inequality problem (SEVIP) and split equality op-
timization problem (SEOP). The results presented in the paper extend
and improve many recent results.
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1. INTRODUCTION

Let C and @ be closed and convex subsets of real Hilbert spaces H; and
Hs, respectively. Consider two bounded linear operators A : H; — Hs and
B : Hy — Hs, where Hj is another real Hilbert space. The split equality
feasibility problem consists of finding two points z € C and y € @Q such
that Ax = By. Split equality fixed problem allows asymmetric and partial
relations between the variables = and y, and covers many problems such
as decomposition methods for partial differential equations, applications in
game theory, and intensity-modulated radiation therapy. These broad ap-
plications caught the attention of many researchers, and eventually leading
to various research output for the split equality feasibility problem, (see for
example[ ) < ) ) ’ ’ ])
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Let C' be a nonempty subset of a real Hilbert space H. A mapping
T :C — (' is said to be nonexpansive if
(1.1) [Tz =Tyl < |lz —yll, Vo, yeC.

A mapping T : C — C is said to be quasi-nonexpansive if F(T) # ()
such that

(1.2) |72 p| < lle —pl, Va € C, pe F(T).

A mapping T : C — (' is said to be strictly quasi-nonexpansive if
F(T) # 0 such that

(1.3) [Tz —pll < llz—pll, Vo ¢ F(T), pe F(T).

A mapping T : C — C is said to be strongly quasi-nonexpansive if T’
is quasi-nonexpansive and

(1.4) Ty —Taxy — 0

whenever {x,} is a bounded sequence in H and ||z, —p|| — [| Tz, —p|| — 0
for some p € F(T) and n > 1.
A mapping T : C — (' is said to be firmly nonexpansive if

L5 Tz = Tyll* < |z = y|I* = (I = D) — (I = T)yl*, Va,y e C.

A mapping T : C — C is said to be firmly quasi-nonexpansive if
F(T) # ( such that

(1.6) Tz —pl* < o = pl* = |2 — Tz|?, Vo€ C, pe F(T).

A mapping T : C — C is said to be k—strictly pseudocontractive if
there exists a k € [0,1) such that

(L7 Tz = Tyl* < ||z = yl* + k(I = T)z — (I = T)y|?, Va,y € C.

If k=1in (1.7), then T is called a pseudocontractive mapping.
A mapping T : C — C' is said to be demicontractive if F(T) # () and
there exists a k € [0,1) such that

(1.8) Tz —p|? < |l = p|* + K|z — Tx|?, Vz € C, pe F(T).

A mapping T': C — C is said to be quasi-pseudocontractive (see [31])
if

(1.9) Tz —p|?* <l —p|* + |z = Tx|?, VzeC, pe F(T).

Remark 1.1. We can observe that the class of quasi-pseudocontractive
operators includes the class of operators defined in equations (1.1) - (1.8).

Let H; and Hjy be real Hilbert spaces and C and Q be nonempty closed
and convex subsets of H; and Hs respectively. The split feasibility problem
(SEFP) is formulated as: to find

(1.10) x € C such that Az € Q

where A : Hy — Hs is a bounded linear operator.
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Censor and Elfving [9] first introduced the SFP in finite-dimensional
Hilbert spaces for modeling inverse problems that arise from phase re-
trievals and in medical image reconstruction (see also [7]). It has been
found that the SFP can also be used in various disciplines such as image
restoration, computer tomography, and radiation therapy treatment plan-

ning [3, 10, 11]. The SFP in an infinite-dimensional real Hilbert space can
be found in [7, 10, 12, 13, 27, 29, 32].

Moudafi [20, 22, 21] introduced the following split equality feasibility prob-
lem (SEFP) to find:
(1.11) x € C,y € Q such that Az = By,

where A : Hi — Hs and B : Hy — H3 are two bounded linear operators.
If B = I (identity mapping on Hs) and Hs = Hs, then (1.11) reduces to
(1.10).

In order to solve split equality feasibility problem (1.11), Moudafi [20]
introduced the following simultaneous iterative method:

(1.12) Ty = Po(zy —yA*(Az, — Byn))
Yn+1 = PQ(yn + BB*(Axn - Byn))

where P¢ is the metric projection of H onto C, Py is the metric projection
of H onto ), A* is the adjoint of A, B* is the adjoint of B and ~ > 0, and
under suitable conditions, he proved the weak convergence of the sequence
{(xn,yn)} to a solution of (1.11) in Hilbert spaces.

In order to avoid using the projection, recently, Moudafi [13] introduced
and studied the following problem: Let T : Hy — Hy and S : Hy — H>
be nonlinear operators such that F (7)) # ) and F(S) # 0, where F(T) and
F(S) denote the sets of fixed points of T" and S respectively. If C = F(T)
and Q = F(59), then split equality feasibility problem (1.11) reduces to

neN

(1.13) x € F(T),y € F(S) such that Az = By,
which is called a split equality fixed point problem (SEFPP).
Moudafi [21] proposed the following iterative algorithm for finding a so-
lution of SEFPP (1.13):
x = T(zp— A" (Az, — Byy))
1.14 i oo eN.
I s = Sl 6B (Ar — Bya) "

He also studied the weak convergence of the sequences generated by scheme
(1.14) under the condition that 7" and S are firmly quasi-nonexpansive map-
pings.

Che and Li [16] proposed the following iterative algorithm for finding a
solution of SEFPP (1.13):

U = Tp— YA*(Az, — Byy)
Tl = uTp+ (1 —ap)Tuy,
1.15 € N.

Yn+l = QpYp + (1 - Oén)Svn
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They also established the weak convergence of the scheme (1.15) under the
condition that the operators T" and S are quasi-nonexpansive mappings.

Chang, Wang and Qin [14] proposed the following iterative algorithm for
finding a solution of SEFPP (1.13):

Uy = Xp— WA (Az, — Byy)
Tnt1 = anTp+ (1 —ap)(1 =L +ET((1 —n)I +nT))uy
(1.16) vzl et BB (A — By) n € N.
Ynt1 = on¥p+ (1 —an)((1 =T +ES((1—n)+nS))vn

They established the weak convergence of the scheme (1.16) under the con-
dition that the operators T" and S are quasi-pseudocontractive mappings.

Boikanyo and Zegeye [0] proposed the following iterative algorithm for
finding a solution of SEFPP (1.13):
u, = Polry —mA*(Az, — Byy)]
Tnpr = apu+ (1 —an)((1=&I+ET((A —n)I +nT))un
1.17 " eN.
( ) Un = PD[yn — B (Al‘n - Byn)] "
Ynt1 = v+ (L= on)((1 = &I+ ES((1 —n)I +n0S5))vn

They also established the strong convergence of the scheme (1.17) under the
condition that the operators T and S are quasi-pseudocontractive mappings.

Motivated by the above works, we propose a new iterative algorithm called
Halpern-type algorithm for the class of quasi-pseudocontractive mappings
and maximal monotone operators that always converge strongly to the so-
lution of the split equality fixed point and null point problem (SEFPNPP).
It is known that the class of quasi-pseudocontractive mappings is more gen-
eral than the class of quasi-contractive mappings, directed mappings, and
demicontractive mappings. Moreover, strong convergence is more desirable
than weak convergence and we obtain our result without additional condi-
tions on the operators. Also, the implementation of the iterative algorithm
does not require the calculation or estimation of the operator norms || A||
and || B|| which may at times be as difficult as solving the original problem
itself. Hence, our results provide a unified framework for the study of the
split equality fixed point and null point problem.

2. PRELIMINARIES

Let H be a real Hilbert space with inner product (-,-) and norm || - ||,
and let C' be a nonempty closed convex subset of H. The notation z,, — x
denotes that the sequence {x,} converges strongly to x. Similarly, =, — =
will mean weak convergence.

For any x € H, there exists a unique point Pox € C' such that

(2.1) |z — Pox| < [lv —yll, Vy € C.

Pc is called the metric projection of H onto C. Note that Pg is a nonex-
pansive mapping of H onto C. For z € H and z € C, we have

(2.2) z=Por < (z—y,x—z) >0, for every y € C.
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In [0], it was shown that if Hq, Hj are real Hilbert spaces, then H := Hj x Hy
is also a real Hilbert space with inner product

((1,91), (22, 92)) = (21, 2) + (Y1, 92), V(@1,91), (22,92) € H1 X Ha
such that
(2.3)  (zp,yn) — (2%, y") implies that x,, — z* and y, — y*
Moreover, if C' is a nonempty, closed, and convex subset of H, (u,v) € H
and (u*,v*) = Po(u,v), then from inequality (2.2), we obtain that
(2.4) ((u",v") = (z,y), (w,v) — (u",v7)) = 0, for every y € C, V(z,y) € H.
Given a positive constant «, a mapping A : C — H is said to be a—inverse
strongly monotone if

(2.5) (x —y, Az — Ay) > a|| Az — Ay||> ¥V =,y € C.
For % > 0, a mapping A on H is called ¥—strongly monotone if

Taking L > 0, a mapping A on H is said to be L—Lipschitzian continuous
if
(2.7) |Az — Ay|| < L||lz —y||, V 2,y € H.

It can be seen that A is Jz—inverse strongly monotone whenever A is
F—strongly monotone and L—Lipschitzian continuous.

Let B be a mapping of H into 2H. The effective domain of B is denoted
by dom(B), that is, dom(B) = {x € H : Bx # (}. A multivalued mapping
B is said to be monotone if

(2.8) (x —y,u—v) >0V x,y € dom(B), u € Bz, v € By

A monotone operator B is said to be maximal if its graph is not properly
contained in the graph of any other monotone operator. For a maximal
monotone operator B on H and r > 0, the operator

(2.9) J,=({I+rB)': H— dom(B)

is called the resolvent of B for r. It is known that J, is firmly nonexpansive.
An operator h is called averaged (see [3]) if there exists a nonexpansive
operator N : D — H and a number « € (0,1) such that

(2.10) h=(1-a)l+aN
where [ is the identity operator.
Definition 2.1. Let T': H — H, I — T is called demi-closed at zero, if for

any sequence {z,} C H and = € H, we have z,, = z and (I — T)x,, — 0,
then z € Fix(T).

Lemma 2.2. [33] Let H be a real Hilbert space, C a closed convex subset of
H. Let T : C — C be a continuous pseudocontractive mapping. Then

(i) F(T) is a closed convex subset of C,

(ii) (I —T) is demi-closed at zero.
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Theorem 2.3. [18] Let T : H — H be a a—attracting quasi-nonexpansive
operator where o > 0 and S : H — H a strongly quasi-nonezpansive opera-
tor. Suppose that F(T) N F(S) # 0. Then

(i) Both T'S and ST are strongly quasi-nonexpansive,

(i) If I =T and I — S are demi-closed at zero, then I — TS and I — ST are
also demi-closed at zero.

Lemma 2.4. [15] Let T : H — H be a strictly quasi-nonezpansive operator
and S : H — H a quasi-nonexpansive operator. Suppose that F(T)NF(S) #
(). Then F(TS)= F(ST)=F(T)NF(S).

Lemma 2.5. [26]. Let {s,} be a sequence of nonnegative real numbers
satisfying
(2.11) Snt1 < (1 —ap)sp + anfn + v, >0

where {a }, {Bn} and {v,} satisfy the following conditions: (i) {ay} C [0, 1],
> ay =00, (i) limsup B, <0, (i) v, >0, Y. v, < oco. Then lim s, =
n=1

n—+00 n—1 n—00
0.

Lemma 2.6. [23] Let H be a Hilbert space with inner product (-) and norm
|| respectively. Then Yx,y € H,

(i) ltz+ (1= yl* = tlzl* + (1 = 1)lly)?
(2.12) —t(1 = t)|z - y|?, Vt € [0,1].

(2.13) (i) |z—yl> = |z —2(z,y) + Iyl
3. MAIN RESULTS

Theorem 3.1. Let Hi and Ho be real Hilbert spaces. Let By and By be
mazximal monotone operators of Hy into 2 gnd Hy into 222 and Jfl and

sz be resolvents of By and B, respectively for A > 0. Let A: Hy — Hs
and B : Hy — Hs be two bounded linear operators, and S : Hi — Hy be
Lipschitzian quasi-pseudocontractive self maps of Hi and T : Ho — Hs be
Lipschitzian quasi-pseudocontractive self maps of Hy such that (I — S) and
(I—=T) are demi-closed at zero. If the solution set of SEFPNPP is nonempty
(that is, T = {(2,y) : @ € F(S)N By 0,y € F(T) N B;'0, Az = By} # ().
Suppose that xo, x1 € Hy and yo, y1 € Hy are chosen arbitrarily. Let
{(zn,yn)} be the iterative sequence generated by

Tn+l = @ﬂo + (1 - Bn)un
(3.1) Up, anty + (1 — (Jzn)SJ)j\Bl (xy, — yA*(Azy, — Byy)) n>1
T Yn+1 i Brnyo + (1 __/Bn)vn B, . - -
vn = anyn + (1 —an)TJ % (yn + vB* (Axy, — Byn))

where the parameter v and the sequences {an}, {Bn} C (0,1) satisfy the con-

. . —BnL2)+Bn L2(JAII24BI2)  /::\ =00 L s
ditions: (i)~ € (07 2(1(1J€2(L4):1_)ﬂ2)(||,Ex||||24HrHj]tf;mz)H )> (#4) 3 _ptq om < 00, (id0) nlg{.lo Brn =

0 and (iv) Y o7 B = 00. Then,
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(a) li_)m &, (p, q) exists for each (p,q) € ', p € F(S) ﬂBflo, g€ F(T)N
B;'0,Ap = By,
. o B . * o _ 13 _ B
(0) it 70 — ST (2 =7 A" (A = By}l = Tl =TI (g +
vB*(Azyn — Byn))|| =0,
(¢) {zn}52, converges strongly to (p,q) € T, p € F(S) N B;'0,q €
F(T)N By'0, Ap = Bq.
Proof : We use Lemma 2.6 (see also [23]) and the fact that S and T" are
L—Lipschitzians.
(32) tw+ (1 =)yl = tha|* + 1 = )llyl* - t(1 = )|z - y|?
which holds Vx,y € Hy. Let (p,q) € T, then using (3.1) and (3.2), we have

|Zns1 — pH2 = ||Bnz0 + (1 = Bn)un _pH2
18 (0 — p) + (1 = Bn) (un — p)|°
(3.3) = Bullzo = plI* + (1 = Ba)llun — plI* = B (1 = Ba) llun — o[>

[ p||2 = [Jan@pn + (1 — an)(SJfl (zn —vA™(Azpn — Byy)) — p)H2
= [lan(zn —p) + (1 - O‘n)(S'Jfl (zn —vA"(Azyp — Byy)) — p)H2
= anllzn = pl? + (1 = an)[[SI (w0 — vA* (Ao — Byn)) = pl®

(3.4) —an(l - an)HSJfl (xn — yA*(Azp — Byn)) — za*.
Substitute equation (3.4) into (3.3) to obtain
|znt1 = plI* = Ballzo — pII* + (1 = Bu){amllzn — p|1?

+(1 = an) [T (20 = yA"(Azn — Byn)) — pl*

—an(1 = an) [ ST (@ — vAT(Azn — Bya)) — .}

—Bn(1 = Bn)llun — $0H2

= Bullwo — ol + an(l = Ba)llzn — p|?

+(1 = an)(1 = B)l|STY (20 — A" (Azy, — Byy)) = pl?

—an(l —ap)(1 - Bn)HSJABl (zn —vA™(Azp, — Byy)) — xnuz
(3.5) —Bn(1 = Bn)lun — o |*.

Since S is Lipschitzian quasi-pseudocontractive and J,™* is nonexpansive, we
have

ISTV (@ — YA*(Azy — Byn)) = pl* < |T0 (@0 — vA*(Azn — Byn)) — pl®
7L||SJ)]\B1 (v — yA*(Azy, — Byn)) — JABl (2 — 'YA*(Al“n - Byn))”2
20 = plI* + 2| A" (Azp, — Byn)|I* = 2y(zs — p, A*(Az,, — Byy))
+H| ST (@n — yA* (Az — Byn)) — J{ (@0 — %4 (Az, — Byy))|
)| ( )
) )

IN

21 ?
= ||-Tn pH2+’7 HA*(Axn_Byn |2_2’7 Axn_ApyAxn_Byn
(3.6) —f—HSJ/\Bl( — vA*(Azy,, — Byy,)) — ‘]A (xp — yA*(Ax,, — Byy) H2
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|A*(Azn — Byy)|I” = (A*(Azy — Byn), A*(Azy — Byy))
= (AA*(Az, — By,), Az, — By,)
(3.7) = | AIP|| Az, — Byal|>.

1S (2, — YA (A, — Byn)) — JP (2 — vA* (Azy, — Byy))|
||SJ)1\31 (xn - 'VA*(Axn - Byn)) —p+p— Jfl (xn - 'YA*(Axn - Byn))H

< L|JY (@0 — vA (Azy — Byn)) — pll + | I (@ — ¥A* (A2 — Byn)) — pl|
< (L+D)|zp —p— A" (Azy, — Byy)||
(3.8) < (L+Dlzn —pll + (L + D||A*(Azn, — By,)|

Substitute equation (3.7) into (3.8), we have

ST (@0 — VA" (Azy — Byn)) = I (0 — yA* (An — Bya))|

(3.9) < (L4 Dffan = pll + (L + D[A]l[| Azr — Bynl|
therefore,
STV (e — YA*(Azy — Byn)) — JY" (20 — yA*(Azn — By,))||?
< (L4 Dllzn = pll + (L + V| A[l[| Az, — Byal|)®
< (LA 12z = pl? + (L + 12| A|?[| A2y — Byal®
H(L A+ 1?[|lzn = pl? + (L + 1| All| Azy, — Bya|®
(3.10) = 2(L+1)%|len — pl* + 292(L + 1)?| A|*|| Az, — Byal*.

Substitute equations (3.7) and (3.10) into (3.6) to obtain

HSJfl(xn — 7yA*(Az, — Byn) — PH2 < |[lzn — p”2 + ’YZHAHZHAmn - BynH2
—2y(Az,, — Ap, Az,, — Byy) + 2(L + 1)?||z,, — p||?
+29(L + 1)*[|A|?[| Azn, — Byal®
= [1+2(L + 1|z, - p|?
+H1+2(L + 1) Al*|| Az, — Byn||?
(3.11) —2v(Ax,, — Ap, Ax,, — Byy).
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Substitute equation (3.11) into (3.5) to obtain
lznrt = plI* < Ballzo — plI* + an(l = Bp)lan — plI?
+(1 = an) (L = Ba){[1 +2(L + 1)*[lzn — p|?
+H[L+2(L + 1)?y°(|Al*|| Azy, — Byn|?
—2v(Ax, — Ap, Az, — Byn)}
—ap (1 —an)(1 - Bn)HSJfl (xn — yA*(Azn — Byn)) — zal|?
—Bn(1 = Bn)llun — x0H2
= Bullzo —pl* + an(l = Ba)llzn — pl®
+(1 = o) (1 = Bp)[1 + 2(L + 1)°]||lz — p|I?
+(1 = an)(1 = Ba)[1 + 2(L + 1)’y A|*| Az, — Byn|*

—29(1 — an)(1 — By){Ax, — Ap, Ax,, — Byy)

—an (1 —ap)(1 - 5n)HSJ)]\Bl (v — yA*(Azy, — Byn)) — an2
(3.12) —Bn(1 = Bo)|lun — x|
lun = 1‘0”2 = [lanzn + (1 - O‘n)SJfl (zn — YA*(Azn — Byn)) — 330”2

lown (@ = 0) + (1 = @) (ST (2 — YA* (A2, — Byn)) — wo)||?

apllzn = @oll* + (1 = an) L2[|lzn — 2ol|* + (1 — cn) LPy[| A*(Azs, — Bya)|®
—2v(1 — o) L* (@), — xg, A*(Azy, — Byy))

—an(l - O‘n)HSJ)j\Bl (zn —vA*(Azy, — Byn)) — $nH2

IN

= [an + (1= an)L2en — 20ll? + (1 — an) L2y | I Az — Byn ?
—2v(1 — Ocn)L2<A:L’n — Axg, Az, — Byy,)
(3.13) —ap (1 — an)HSJfl (2 — yA*(Az — Bxy,)) — z,|)°.

Substitute equation (3.13) into (3.12) to obtain

lzntr = pl* < Bullzo — pl* + an(l = Ba)llzn — pl®
(1 = ) (1 = Ba)[L +2(L + 1)) [l — p|?
(L= an) (L = o)L+ 2(L + 1)*]y* | A|]?|| Az, — Bynll?
—2v(1 — an)(1 = Bn){Azy — Ap, Az, — Byn)
—an(l —ap)(1 - Bn)HSJfl (xn — yA™(Azn — Byn)) — anz
~Bu(1 = Bu){lan + (1 — an) L?) |y — ol|?
+(1 = ) L] A|?)| Az, — Byal®
—2v(1 — o) L*(Ax,, — Az, Az,, — Byy,)
—an(1 = ) ||STF (@ — vA* (Azy — Bya)) — 2%}
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= [1=Bn+2(1 = an)(1 = Bu) (L + 1)z, — p|?
+(1 = an)(1 = )1+ 2(L + 1)*]7?||A||*|| Az, — Byn|®
—Bn(1 = Bn)(1 = ) L*4|| Al*|| Az, — Bya|?
—27(1 — an)(1 — By){(Azxy, — Ap, Az, — Byy)
+29B,(1 = Ba) (1 — an) L*(Azy — Az, Az, — Byn)
—ap (1 —ap)(1 - ﬁn)zHSth (2, — yA*(Azy, — Byn)) — fanQ
—Bu(1 = Ba)lan + (1 = ) L?||2n — aol|?
(3.14)  +Bnllzo — pl*.

Hyn—I—l - QHZ = Hﬁnyo + (1 - /Bn)vn - QHQ
180 (yo — @) + (1 = Ba) (vn — @)|?
(3.15) = Ballyo = plI> + (1 = Bu) v — plI* = Ba(1l = Ba)llvn — wol*.

|vn  — QH2 = |lanyn + (1 — an)(TJ>]\32 (Yn +B*(Azy, — Byy)) — Q)H2
= llon(yn — q) + (1 — an)(T T (20 + ¥B*(Azy — Bya)) — ¢l
= anllyn — glI* + (1 — @) ITT2 (yn + ¥ B* (Azy — Byn)) — gf?
(3.16) —an(1 = an)|T T (yn + YB* (Azy — Byn)) — ynll*.

Substitute equation (3.16) into (3.15) to obtain

lynsr = 4l* = Ballyo — all* + (1 = Bu){anllyn — glf?
+(1 - O‘n)HTJABQ(yn +vB*(Az, — Byy,)) — CIHQ
—ap (1 — O‘nHTJ)j?2 (Yn +yB*(Azy, — Byn)) — yn”Q} — Bn(1 = Bullyn — y0”2
= Ballyo — al* + an(l = Ba)llyn — all?
+(1 = an) (1 = B)ITT2 (yn + ¥B*(Awn — Bya)) — pl®
—an(l —ap)(1 - 5n)HT‘])I\32(yn +B*(Azy, — Byn)) — ?JnH2
(317)  =Bu(1 = Ba)llon — wol*.
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Since T is Lipschitzian quasi-pseudocontractive and J,? is nonexpansive,
we have

ITJ(y + YB*(Azy — Byn)) — al* < |70 (yn + vB*(Azn, — Byy)) — q|?
H|T TP (yn +vB*(Azy, — Byn)) — JL2 (yn + vB* (Azy, — Byn))|)?

< |lyn — g+ vB*(Azy, — Byn))|?
T TP (yn + YB* (Azn — Byn)) — I (yn + vB* (Azn — Byn))|I?
< Hyn _QHQ +72HB* Az, — Byn ‘ + Yn —q, B (Axn — By, >
|

( ) —
( )T+ 2y
+H|T T2 (yn + v B*(Azn — Bya)) — J32 |
= lyn — all” + 7?1 B*(Azy — Byn)|I* + 27

( ) —

(Un )
( )
(yn + ’YB (Axn - Byn))
( )
(3.18)  +|TJP2(yn +vB*(Az, — By, 2 (4 )

+ 2v(Byn — Bq, Azp, — By
J + yB*(Ax, — By,))|*.

| B*(Axy — Byn)Hz = (B*(Aw, — Byn), B*(Ax, — Byn))
= (BB*(Ax, — By,), Az, — Byy,)
(3.19) = ||B|*||Azy, — Bya|*.

”TJ)%(yn + yB*(Az, — Byn)) — J)]\BQ (Yn +yB*(Azy, — Byn)) ||
1T T (yn + v B* (A — Byn)) — g+ q — J (yn +vB*(Az, — By,))||

(
< ”TJ,\BQ(?/TL +vB*(Azyn — Byn)) — gl + ”J)j\92 (Yn +¥B*(Azy, — Byn)) — 4|
< LHJ)]\BQ(yn +B*(Azy, — Byn)) — gl + H‘])j\gl (Yn +vB*(Azy, — Byn)) — pl|
< (L+1|lyn — ¢ +~yB*(Azy — By,
(320) < (L + Dllyn — all + (L + 1)[| B*(Azn — Bya)||-

Substitute equation (3.19) into (3.20), we have
HTJ)\BQ(yn + yB*(Azn, — Byn) — J)]\BQ (yn +vB*(Azy — Byn)||

(3:21) < (LA+Dlyn —all + (L + DBl Azn — Bya||
therefore,

ITJ2(yn + YB*(Azy — Byn) = J3 (yn + 7B (Azy — By,)|?
(3:22) < 2(L 4 1)?(lyn — qll + 290*(L + 1) BI*[| Azy — Byall*.

Substitute equations (3.19) and (3.22) into (3.18) to obtain
ITI (e + ¥B*(Azy = Bya) = all* < llyn — all> ++°1BI*[| Az, — Byall?
+27(Byn — Bq, Ay — Byn) + 2(L + 1)*||yn — p|*
+27(L + 1)*|| B|*| Az — Bynl|?
= [1+2(L+1)*lyn —all?
+H1+2(L + 1)’y || BI? || A2y, — Byall?
(3.23) +2v(Byn, — Bq, Az, — Byy,)
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Substitute equation (3.23) into (3.17) to obtain

”yn+1

(3.24)

|vn  —

— pl* < Ballyo — al” + an(l = Ba)lyn — all?
(1= an) (1 = B){[1 + 2(L + 1)?||zy — p?
+[1+2(L + 1)*]7?| B|?| Azy — Byal
+2v(Byn — Bq, Azy, — Byn)}
—an(1 = an)(1 = B)ITTY2 (yn + YB* (Azy — Byn)) — ynl)?
—Bn(1 = Bp)|lvn — 550”2
= Bullyo — all* + an(l = Ba)llyn — al®
+(1 = an)(1 = Bu)[L +2(L + 1)?]||yn — gl
+(1 = an)(1 = Bu)[1 + 2(L + 1)’]7?|| B|*|| Az, — Bya|?
+279(1 — an)(1 = Bn)(Byn — Bq, Ax, — Byn)
—an (1 —ap)(1 = IBTL)”T‘])\BQ(yn +vB*(Azy, — Byn)) — ynH2
—Bn(1 = Bn)llvn — yOHQ'

yO||2 = Hanyn + (1 - an)TJ)\BQ(yn + ’VB*(ACUn - Byn)) - yOH2
Han(yn — o) + (1 — Ofn)(TJi32 (Yn +yB*(Azy, — Byn)) — Z/O)H2

< anllyn — voll> + (1 = an) L?lyn — voll* + (1 — o) L*~[| B*(Az, — Byn)|?
+2v(1 — ) L*(yn — yo, B*(Az,, — Bya))
—ap (1 — an)HT‘])j\BZ(yn —yB*(Azn — Byn)) — yn||2

= [an + (1 = @)Ly — vol* + (1 = @) L*4|| B|1*|| Az, — Bynl|?
+2v(1 — o) L*(By,, — Byo, Az,, — Byy)

(3.25) —ap (1 - an)HTJ)j\% (Yn +vB*(Azy, — Byn)) — ynH2-

Substitute equation (3.25) into (3.24) to obtain

||yn+1

—all* < Ballyo — all* + an(1 = Ba)llyn — al®
(1= ap) (1= Ba)[1+2(L + 1)?][lyn — gl
+(1 = an)(1 = Ba)[1+ 2(L + 1)’1y*|| BI* || Azn — Bynl|?
+27(1 — an)(1 = Bn)(Byn — Bq, Azy, — Byn)
—an(l —ap)(1 - ﬂn)HTJ>1\32(yn +vB*(Az, — Byn)) — ynH2
—Bn(1 = Bu){lom + (1 = an) L?] |2y — 20|
+(1 = an) L?y||B||| Az, — Bya|?
+27(1 — an)L2<Byn — Byo, Ax,, — Byp,)
—an(1 = an)[ITI (yn + 7B* (Aza — Bya)) — yul*}
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= [1=Bn+2(1 = an)(1 = Ba)(L + 1)?]|lyn — al®
(1 = ) (1 = Bu)[1 + 2(L + 1)°]7*|| B|*[| Azn — Bya|?
—Bn(1 = Bn)(1 - O‘?JLQ'YHB”QHA%L - BynH2
+2v(1 — an)(1 — Bn){(Byn — Bq, Azy, — Byn)
~298n(1 = Bn) (1 — an) L*(Byn — Byo, Az — Byn)
—an(1 = an)(1 = B)* | T (yn + ¥ B* (Azp — Byn)) — yal|*
—Bn(1 = Bp)[om + (1 — O‘n)LQ]”yn - Z/O”2
(3.26)  +Bullyo —all*.

zns1 = plI* + lyns1 — all?
<= Bn+2(1 = o) (1 = Bu) (L + D*[[lzn = pII* + llyn — all”]
(1 = an) (1= Ba)[1+2(L + 1)*] (V|| A||* +~2(|BI*) || Az, — Bya|?
—Bu(1 = Ba)(1 = @) L2(]|A|1? + 7| BII*) [ Az — Byall?
—27v(1 — a,)(1 = By)(Axy, — Ap, Ax,, — Byy,)
+27(1 — an)(1 = Bn)(Byn — Bq, Axy, — Byn)
+278n(1 = Bn) (1 — an)L?(Az,, — Axg, Az, — By,,)
=298 (1 = Bn)(1 — an)L2<Byn — Byo, Az, — Bxy,)
—an(l —ap)(1— 5n)2(HSJ)]\31 (xn —yA"(Azp, — Byn)) — anQ
+HTJ)]\B2(yn +vB*(Azy, — Byn)) — ynHZ)
—Bn(1 = Bn)[om + (1 - O‘n)LQ](”xn - 330”2 +{lyn — yO||2)
+Bn(llzo = plI* + llyo — all*)
= [1=Bn+2(1 —an)(1 = Bu)(L+ 1)2”“3771 - p”2 + {[yn — QHQ]

—(1=an)(1 = Ba)[2v(1 = BuL?) = {(1 + 2(L + 1)*)y
—Ba L2y (V| Al + A1 BI*)] || Az — Bynll?
=2y(1 = an)(1 = Bu) (1 = BuL?)|| Ay, — Bya|?
—ap(l—an)(1— 571)2(”&]51 (xn — A" (Azyp — Byn)) — xn”2
+||TJ)];32(yn +B*(Azy, — Byn)) — ynHQ)
—Bn(1 = Bn)lom + (1 — an)LQ](Hmn - $0||2 + [lyn — y0||2)

(3.27) +Bn(llzo — plI* + llyo — alf*)
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Pry1(p,q) < [1 = 0n]Pu(p, q) + BnPo(p, q)
—(1 = an)(1 = Bn)[2v(1 = BuL?) — {(1 + 2(L +1)%)y
—Ba L2} (VI AN + A BI*)][| Az — Bynll?
—2y(1 = ay)(1 = Bn)(1 = B, L?)|| A2y, — Bya|?
—an(l —an)(1 - ﬁn)z[HSJfl (zn —yA"(Azy, — Byy)) — an2
+HT‘])\BQ(yn +B*(Azy, — Byy)) — ynHQ]
(3.28) —Ba(L = Ba)lan + (1 = an) L)([lzn — zol* + [lyn — wol®)
where

6n = Bn—2(1—an)(1 = Bu)(L+1)2

By condition (iv) . B, = oo and then ) 4, = oco. Hence from Lemma
n=1 n=1
2.5 that following 1i_>m &, (p, q) exists, implies
(3.29) lim ||z, —p| and lim ||y, — ¢l
n—oo n—oo
From equation (3.28)
(1 - an)(l - /Bn)[2'7(1 - BnLZ) - {(1 + 2(L + 1)2)’7
~Bu L2} (YAl + A BIP)]l| Az, — Byal®
+an(l—an)(l - ﬁn)2(HSJ>{Bl (zn — A" (Azy, — Byn)) — an2
+HTJ)\BQ (Yn +vB*(Azy, — Byn)) — ynHQ)
< Pu(p:q) — 0nPn(p, ) + BnPo(p, q)
(3.30) —®p11(p,q) — 0 (as n — o0).

: 2(176nL2)+BnL2(HAH2+|IBII2)) P :
Since v € <0, T2+ (TAPATED) ) this implies that

(3.31) nh_)IrOlo |Az,, — Byn|| =0
(3.32) Tim 1STP (2, — vA*(Azy, — Byy)) — @n] = 0
(3.33) Tim (|7 (yn +7B* (Azn — Bya)) = yall = 0
Also,

(3.34) nlgrolo Dpi1(xn, yn) =0,

It follows from equations (3.1)

[Znt1 = @nl| = [|Bnzo + (1 = Br)yn — znl|

B (z0 — 25) + (1 = Bn)(yn — @) |

B (z0 — 25) + (1 = Bn)(anzn + (1 — an)(SJ)l?l (zn —yA™(Azn — Byn)) — 20 ||
= |Bn(xo —an) + (1 = Bp)(1 — an)(SJBl (xn — yA™(Azn — Byn)) — an) ||

Bnllzo — + Bnllzn
(3.35) ||(o_gﬂ)( ’lln)HSpH Hxn — A (Azy — Byn)) — 2|

| A
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1Yn+1 = Ynll = [|Bnyo + (1 = Bn)un — ynl|
= 11Bn(yo = yn) + (1 = Bn) (un — ya) |
= |1Bn(yo — yn) + (1 = Bn)(anyn + (1 — O‘N)(TJFQ(yn —vB*(Azy, — Byn)) — yn) ||
= |1Bn(yo —yn) + (1 = Bn)(1 — O‘n)(TJ;\BQ(yn —yB*(Az, — Byn)) — yn) |

< Ballyo = pll + Bullyn — pl|
(3.36) +(1— 31— O‘n)HTJ)j\Bl (zn — yB*(Azn, — Byn)) — ynll

Ppir(zn 5 Yn) = 201 — 2ol + [[Yns1 —
< Bullwo = pll + Bullzn — pl
+(1 = Ba)(1 = an) ISy (2 — ¥ A (Azy — Bya)) — 2
+Bullyo = pll + Bullyn — pll
(3.37) +(1 = Ba) (1 = an)|TJ3 (20 — ¥B* (A — Byn)) — yull
From equations (3.29), (3.32) and (3.33), nhi& Dri1(xn, yn) = 0.
By Lemma 2.2, we have F'(.5), F(Jfl), F(T) and F(JABQ) are closed and

convex, and hence I' is also closed and convex. Let (p,q) = Pr(u,v). By
characterization of the metric projection, we get

(3.38) ((u,v) = (B:4); (,9) — (B, 4)) < 0., V2T

Now, since {z, y,} is bounded in H; x Ha, there exists (p,q) € Hy x Hy and
a subsequence {xn,, yYn, } of {xn,yn} such that (r,,,yn;) = (P, ) and Since
(b,4) € T, we obtain Sp = {p}, T4 = {g}, Jy"p = {p} and J;*q = {g}.
(3.39) lim sup ((u,v) = (B, q), (Tn, yn) — (9, 7)) < 0.

n—oo

To show this, since {x,,y,} is bounded in H; X Ha, there exists (p,q) €
Hj x H and a subsequence {zy;, yn, } of {zn, yn} such that (z,,,yn,) — (B, q)
and

lim sup [(u — P, xn — D) + (v — G,y — §)]

= lim sup (v, v) = (P, ), (@n, yn) — (P )
(3'40) = Zliglo«uv U) - (ﬁv qA)a (‘Tm? ym) - (ﬁy (j)>

But (n,,yn;) — (P,q) implies that z,, — p and y,, — ¢. Hence from
equation (3.29), we have z,, — p and v,, — ¢, respectively. Now, since
(I —S) and (I —T) are demiclosed at zero, from Equation (3.32) and (3.33)
we get p € F(S) and ¢ € F(T).

Next, we show that Ap = Ba. Observe that

HAﬁ - BQHQ = HAﬁ - Axni + Axm' - Byni + Byni - BQH2
= (4P — Azy, + Byn, — BG) + (Azn, — Bys,)|I’
< HA‘TM _Byni||2+2<Aﬁ_BijAﬁ_Axni+Byni _BQD
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where the inequality follows from inequality (1.9). Since x,, — p and y,, —
g as i — o0, it follows that Az,, — Ap and By,, — Bq as i — oo Taking
limits on both sides, and making use of Equation (3.31), we get

14p — Bq|* < lim sup [|Azn, — Byn,[|?
1—00
+2lim sup (Ap — B§, Ap — Azp, + Byn, — BQ)
1—+00
(3.41) = 0.

The inequality (3.41) implies that Ap = Bg, that is (p,q) € .

Since xn, — P, Yn, — 4, HSJAB1 (x, — yA*(Azy, — Byn)) — x| — 0 and
HTJfﬂ(yn —vB*(Ax,, — Byn)) — yn|| — 0 as n — oo, we have x,,, — p and
Yn, — . By the demiclosedness of I —S and I — Jfl at zero, then I—SJ/{92 is
also demiclosed at zero. Again by the demiclosedness of I —T and I —J f 2 at
zero, then I —TJ )]\3 2 is also demiclosed at zero, and from equations (3.32) and
(3.33), we get p € F(SJPY) = F(S)NBy'0and § € F(TJP?) = F(T)nB; 0.

Now let us show that p € Bl_l(). Let w, = Jfl (xn, — yA*(Azy, — Byy),
then we can easily prove that
% (n, — wp — YA*(Ax,, — Byy)) € Biwy,

By the monotonicity of B, we have

1
<wn -V, 7 (:L'n — Wp — ’YA*(A:EH - Byn)) B ’LU>

A
for all (v,w) € G(By). Thus, we also have
1
342) (o= 0.5 (o~ = 74" (As, — By)) 0

for all (v,w) € G(Bi1). Since wy, — P, ||wp, — Jfl(xni — yA* (Azy,, —
By,,))|| — 0. Az,, — By,, — 0 as i — oo, then by taking the limit as
i — oo in equation (3.42) yields

<]§—U,—w>§0

for all (v,w) € G(B1). By the maximal monotonicity of By, we get 0 € B1p,
that is, p € By 0.

Similarily for ¢ € By 10. By the maximal monotonicity of Bs, we get
0 € Byg, that is, § € B;lo. Hence, the sequence {(x,,yn)} generated by
equation (3.1) converges strongly to (p.q) € I" as n — oo. This completes
the proof of the theorem.

Corollary 3.2. Let Hy and Hs be real Hilbert spaces. Let A : Hy — Hg
and B : Hy — Hsbe two bounded linear operators, and S : Hy — Hp be
Lipschitzian quasi-pseudocontractive self maps of Hy and T : Ho — Ho be
Lipschitzian quasi-pseudocontractive self maps of Hy such that (I — S) and
(I = T) are demiclosed at zero. If the solution set of SEFPP is nonempty
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(that is, T = {(z,y) : x € F(S),y € F(T),Ax = By} # (). Suppose that
xo, 1 € Hy and yo, y1 € Hy are chosen arbitrarily. Let {(xn,yn)} be the
iterative sequence generated by

Tn4+1 — 5n$0 + (1 - Bn)un
Up = opxn+ (1 —ap)S(z, —vA*(Ax, — By,))
3.43 > 1.
( )ynJrl = Bny[) + (1 - Bn)vn =
Un = QpYn + (1 - an)T(yn + ’VB*(Axn - Byn))

where the parameter v and the sequences {an}, {8} C (0,1) satisfy the
conditions: (i) vy € (o 2(1—BnL2)+BnL2<||A||2+||B||2)) (i) S an < 0
' ’ ’ n= ’

(1+2(L+1)?) (JAIP+ [ BI[*)
(ui) nh%n;o Bn =0 and (iv) Y o7, fn = 00. Then,

(a) li_)m &, (p,q) exists for each (p,q) €T,
n oo

(b) lim ||zp,—S(xn—vA*(Azy,—Byy,))| = lim |lyn—T (yn+vB*(Ax,—
Byn))| =0,

(¢) {zn}22, converges strongly to (p,q) € T

Corollary 3.3. Let Hy and Hs be real Hilbert spaces. Let A : Hi — Hj
and B : Hy — Hs be two bounded linear operators and if the solution
set of split Equality Null Point Problem (SENPP) is nonempty (that is,
={(z,y):xz € BfIO,y € B;lo,Al‘ = By} # 0) where By : Hy — 21 and
By : Hy — 212 are two set valued mazimal monotone mappings. Suppose
that xo, x1 € Hy and yo, y1 € Ha are chosen arbitrarily. Let {(xy,yn)} be
the iterative sequence generated by

Tp+1 = ano + (1 - Bn)unB
Un = Xy + (1 —ap)Jy (2, — yA*(Azy, — Byy))
3.44 A > 1.
( n+l1 — Bnyo + (1 - ﬁn)vn "=
Un = QpYn + (1 - an)J)\B2 (yn + VB*(ACUn - Byn))

where the parameter v and the sequences {an}, {Bn} C (0,1) satisfy the

. . 2(1=Bn L?)+Bn L (|| Al +| 1 B||? ‘- 00
conditions: (i) v € (O, ((152@3:)%)(ngl‘”%'l”ghz)” )), (i1) D02 o < 00,

(i4) ILm Bn =0 and (iv) Y 7, fn = 00. Then,

(a) 1i_>m D, (p, q) exists for each (p,q) € T,
(b) Tt lam — I (@0 — 1A% (An — Bya)ll = T iy — TP (g1 +

vB*(Ax, — Byn))| =0,
(c) {zn}22, converges strongly to (p,q) € T.

4. APPLICATIONS

Let f be a bifunction from C x C' to R, where R is the set of real numbers.
The equilibrium problem is to find z € C such that f(z,y) > 0 for all
y € C. The set of such solutions is denoted by EP(f). Numerous problems
in physics, optimization, and economics reduce to finding a solution to the
equilibrium problem (see [7]).
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Lemma 4.1. For solving the equilibrium problem, they assumed that the
bifunction f satisfies the following conditions:

(A1) f(x,z) =0 for all x € C,

(A2) f is monotone, that is, f(x,y) + f(y,z) <0 for all z,y € C,

(A3) for every x,y,z € C, limsupy, f(tz + (1 —t)z,y) < f(x,y),

(A4) f(x,-) is convex and lower semicontinuous for each x € C'.

Lemma 4.2. [5]. Let C' be a nonempty closed convex subset of H, and let
f be a bifunction from C x C to R satisfying (A1) — (A4). If r > 0 and
x € H, then there exists z € C' such that

(4.1) f(z,y)—l—%(y—z,z—x)zo, Yy € C.

Lemma 4.3. [17]. Let C be a nonempty closed convex subset of H, and
let f be a bifunction from C x C to R satisfying (A1) — (A4). Forr >0,
define a mapping T, : H — C as follows:

(4.2) Tr(a:):{ZEC:f(z,y)—i-%(y—z,z—@ >0, Vy e C}.

Then the following hold:

(i) T, is single valued,

(ii) T, is firmly nonexpansive, that is, for any x,y € H
(4'3) <$ -y, Trr — Try> > ||Trl‘ - TryHQa

(iii) Fix(T,) = EP(f),

(iv) EP(f) is closed and convez.

Let C and @@ be nonempty closed convex subsets of H; and Hs, respec-
tively. Let f1 : C x C = R and fo : Q@ X Q@ — R be two bifunctions and
A: Hy — Hz and B : Ho — H3 be bounded linear operators, then the split
equality equilibrium problem (SEEP) is to find a point (z*,y*) € C x @
such that

(4.4) fi(z*,z) > 0 Ve € C and }
' foly*y) 20Vy €Q
Then above problem is to find a point (z*,3*) € C x @ such that

(4.5) z* € EP(f1) and y* € EP(f2): Ax™ = By™.

Lemma 4.4. [25] Let C be a nonempty closed convex subset of H, and let
f be a bifunction from C x C to R satisfying (A1) — (A4). Define Ay as
follows:

(460 (x) = { éz €H: f(zy) 2 (y—=z2), VyeC} xififx ; g

Then the following hold: (i) Ay is mszimal monotone, (i) EP(f) = AJTIO,
(ii) T) = (I +rA;)~0, r>0.
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Let H be a real Hilbert space, and let f be a proper lower semicontinuous
convex function of H into (—oo,4+00]. Then the subdifferential df of f is
defined as

4.7 0f(x)={ze H: fly) - f(z) 2 (z,y —x), Vy e H}

for all z € H. [24] claimed that Jf is a maximal monotone operator. Let
C be a nonempty closed convex subset of H, and let ¢ be the indicator
function of C'. That is,

(45) o ={ 055

+oo z¢C

Since ¢ is a proper lower semicontinuous convex function on H, the sub-
differential 05, of dc is a maximal monotone operator. The resolvent .Jy of
Os., for A > 0 is defined by

(4.9) I = (I +N\0s.) tx, Vo€ H.
we have

u=(I+Xs.) 'z & x€u+N\s,u

& x€u+ANcu<s x—u € ANou

1
& X(x—u,y—mg(), Yy € C

(4.10) & u=FPex

where Nou = {z € H : (z,z —u) < 0 Vy € C}. The variational inequality
problem for nonlinear operator A is to find z € C such that

(4.11) (Az,y —2z) >0 Vy e C.
The set of its solutions is denoted by VI(C, A). Then we have

z VI(C,A)

(Az,x —2) >0 VyeC
(—Az,x—2) <0 VyeC
—Az € Noz

0c€ A2+ Noz < 0€ Az + 052

(4.12) & ze(A+0s,)7M0.

te e

With (4.12), we can obtain the strong convergence theorem for the varia-
tional inequality problem.

Let C' and @ be nonempty closed convex subsets of H; and Has, respec-
tively. Let S : Hy — Hy and T : Ho — Hs be two quasi pseudocontractiv
mappings and A : Hy — Hs and B : Hy — H3 be bounded linear operators.
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The Split Equality Variational Inequality Problem denoted by SEVIP is
to find a point (u*,v*) € C' x @ such that

(u—u*, SJfl(u* — yA*(Azy, — Byy))) >0 Yu € C and
(4.13) (v — 0", T (v* + yB*(Awn — Byn))) > 0 Vo € Q.
such that Az, = By,.
Let D be the solution set of the SEVIP given by
(4.14) D={u" eVIC,S),v e VI(Q,T) : Az, = By, }

We observe that u*,v* € SEVIP if and only if v* = SJfl(u* —yA*(Ax, —
By,)) and v* = SJ/{31 (v* +yB*(Ax,, — Byy)).

Let f: H — (—o00,+00] be a function, we define the set of minimizer of
f by
(4.15) Argminf :={z € H : f(z) < f(2),Vz € H}.
If f is a proper, lower semicontinuous and convex function, then 0f is a
maximal monotone operator. Moreover,

(4.16) z € (0f) 10 <= 0€ df(x) & f(z) < f(2),Y2 € H & x € Argminf,

that is, Argmin f = (0f)~'0. In this case, the resolvent of df is called the
proximity operator of f.

Let H; and Hy be real Hilbert spaces. Let f : Hy — (—o0,+o0] and
g : Hy — (—00, 4+00] be proper, lower semicontinuous and convex functions.
Let A: Hi — Hs and B : Hy — H3 be bounded linear operators, the Split
Equality Optimization Problem (SEOP) is the problem of finding (z*,y*) €
H; x Hy such that

(4.17) 2" € Argmin f and y* € Argmin g, such that Az* = By".
Denote by df = By and 0g = Bs. Since xz* and y* are the minimum of f
on H; and g on Hs, respectively for any A > 0, we have

a* = F(S)N (8f)710 = Fiz(SJ) and
(4.18) y* = F(T) N (dg)~'0 = Fiz(TJY).

This implies that the split euqlity optimization problem (4.17) is equivalent
to the split common fixed point and null point problem SEFPNPP.

4.1. Split Equality feasibility Problem (SEFP).

Theorem 4.5. Let Hi and Ho be real Hilbert spaces and C' and Q) be
nonempty closed convex subsets of Hy and Hs respectively. Let A : Hy — Hs
and B : Hy — Hjs be bounded linear operators, and S : Hi — Hp be
Lipschitzian quasi-pseudocontractive self maps of Hy and T : Ho — Ho be
Lipschitzian quasi-pseudocontractive self maps of Hy such that (I — S) and
(I=T) are demiclosed at zero. If the solution set of SEFP is nonempty (that
is, ' ={(z,y) 2 € F(S)NC ,y € F(T)NQ : Az = By} # (). Suppose
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that xo, x1 € Hy and yo, y1 € Ha are chosen arbitrarily. Let {(xn,yn)} be
the iterative sequence generated by

Tpt+1 = Bn-TO + (1 - ﬁn)un
Un = opxn+ (1 —an)SPo(r, — yA*(Ax, — By,))
4.19 >1
( n+1 = Bny() + (1 - Bn)vn "=
vp = onYn + (1 —an)TPy(yn +vB*(Azxy, — Byy))

where the parameter vy and the sequences {an}, {Bn} C (0,1) satisfy the

. . 2(1—Bn L) +Bn L2 (| A2 +|| B2 .. 00
conditions: (i) v € (0, AT TR ))’ (i) 2nzy an < 00,

(i4i) li_)m Bn =0 and (iv) Y -7, fn = 00. Then,

(a) 1i_>m D, (p, q) exists for each (p,q) € T,

(b) lim [lz, — SPo(zn — A" (Azn — Byn))| = lim |ly, — TPq(yn +
n—oo n—oo
vB*(Azn — Byn))| = 0,

(c) {zn}22, converges strongly to (p,q) € T.

Proof: Set B; := 0dc and By := 00g. Then B; and Bp are maximal
monotone such that Jf ' = Py and Jf > = Pg for A > 0. We also have
By 10 = C and By 10 = Q. Hence the result is obtained directly by Theorem
3.1.

4.2. Split Equality Equilibrium Problem (SEEP).

Theorem 4.6. Let C and Q be nonempty closed convex subsets of Hy and
Hs, respectively. f1 : C x C — R and fo : C x C — R be bifunctions
satisfying (A1) — (A4) and let TI' and T2 be resolvents of Ay and Ay,
in Lemma 77, respectively for ri, ro > 0. Let A : Hi — Hs and B :
Hy — Hjs be bounded linear operators, and S : Hi — Hy be Lipschitzian
quasi-pseudocontractive self maps of Hy and T : Hy — Hy be Lipschitzian
quasi-pseudocontractive self maps of Hy such that (I —S) and (I —T) are
demiclosed at zero. If the solution set of SEEP (4.5) is nonempty (that is,
I = {(z,y) : © € F(S) N EP(f1),y € F(T) N EP(f),: Az = By} # 0).
Suppose that xo, x1 € Hy and yo, y1 € Hy are chosen arbitrarily. Let
{(zn,yn)} be the iterative sequence generated by

Tn+l = ano + (1 - ﬁn)un ;
Uy, = %y + (1 —an)STH (xy — yA*(Azy, — Byy))
4.20)"" ntn n)o i dn >1
2005 = Buyo + (1— Ba)on nz
va = anyn + (1 = an)TTE (o + ¥B*(Az, — Byn))

where the parameter v and the sequences {an}, {Bn} C (0,1) satisfy the

ey . . — nL2 nL2 A 2 B 2 v
conditions: (i) v € (0, 20(152@?1332)(Hf(ll\l\QJHrIIJg}I%” )), (i4) Yooy < 00,

(v31) li_>m Br =0 and (iv) Y77, Bn = o0. Then,

(a) le &,(p,q) exists for each (p,q) €T,
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(b) Tim [[en — ST (n — vA*(Azy — Bya))l| = lim |lym — TTE (g +
n— o0 n—oo
VB*(Azy, — Byn))|| =0,
(c) {zn}22, converges strongly to (p,q) € T.
Proof : We set By := Ay, and By := Ay,. By Lemma 4.4, we know that B
and By are maximal monotone, EP(f1) = B;'0, EP(fs) = By'0, Th =
J f ! and T,f; =J /{9 2, so the result is obtained directly by Theorem 3.1.

4.3. Split Equality Variational inequality Problem (SEVIP).

Theorem 4.7. Let Hy and Hy be Hilbert spaces, A : Hi — H3z and B :
Hy — Hjs be bounded linear operators, and S : Hi — Hy be Lipschitzian
quasi-pseudocontractive self maps of Hy and T : Hy — Hs be Lipschitzian
quasi-pseudocontractive self maps of Hy such that (I —S) and (I —T) are
demiclosed at zero. Let A* denotes the adjoint of A. Let By : H — 2/
and By : Hy — 202 be two set valued mazimal monotone mappings and
v, A>0. Given any x* € Hy, y* € Hy
(i) if * and y* are solutions of SEVIP, then SJfl (x* — yA*(Az* —
By*)) = x* and TJ)]\32 (yn +yB*(Az* — By*)) = y*,
(ii) Suppose that SJ)]\Egl (¥ — yA*(Az* — By*)) = x* and TJ){82 (y* +
vB*(Az* — By*)) = y*, and the solution set of SEVIP are not
empty, then * and y* are solutions of SEVIP.

Proof : (i) Suppose that z* € H; is a solution of SEVIP, then z* € F|(S)N
B0 and y* € F(T) N By 0. Tt is can be seen that SJAB1 (x* — yA*(Ax, —
Byy,)) = z* and TJ)]\BQ(y* +yB*(Az* — By*)) = y*.
(ii) Suppose that w*, w™* is the solution of SEVIP and SJAB1 (x* —yA*(Ax* —
By*)) =" and TT*(y" + B (Aa" — By")) =y,
(27 =A™ (Az" — By") —a™, 2" —w") + (y" + A" (42" = By") —y",y" — @) 2 0
for each w* € F(S) N B; 10, that is,

(A*(Az™ — By"),z" —w") <0
for each @* € F(T) N B5'0,

(B* (A" — By"),y" — =) <0
w*, w* is the solution of SEVIP.
4.4. Split Equality Optimization Problem (SEOP).

Theorem 4.8. Let Hy and Ho be Hilbert spaces. Let f : Hi — R and
g : Hy — R be proper lower semicontinuous convexr function of H into
(=00, 400]. Let A: Hy — Hs and B : Hy — Hs be bounded linear operators,
and S : Hi — Hy be Lipschitzian quasi-pseudocontractive self maps of Hi
and T : Hy — Hy be Lipschitzian quasi-pseudocontractive self maps of Ha
such that (I —S) and (I —T) are demiclosed at zero. If the solution set of
SEOP (4.17) is nonempty (that is, T' = {(x,y) : # € F(S) N (9f)710,y €
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F(T)N(0g)~'0: Az = By} # 0). Suppose that o, x1 € Hy and yo, y1 € Ha
are chosen arbitrarily. Let {(zy,yn)} be the iterative sequence generated by

Tpt+1 = anO + (1 - /Bn)un of
Uy = Ty + (1 —an)SJy (z, — YA (Az, — Byy))
4.21 A >1
( n+l = Bnyﬂ + (1 - ﬁn)vn "=
Un = apyn+ (1— ozn)TJff(yn + vB*(Az,, — Byy))

where the parameter v and the sequences {an}, {Bn} C (0,1) satisfy the

. . 2(1—Bn L) +Bn L2 (| A2 +|| B2 .. 00
conditions: (i) v € (0; AT TR ))’ (i) 2nzy an < 00,

(i4) li_)m Bn =0 and (iv) Y o7 fn = 00. Then,

(a) ILm D, (p, q) exists for each (p,q) €T,
: _ of _ * _ — i _ dg
(b) Tim [z, — STy (2n — yA*(Azn = Byn))|l = lim [jyn — T3 (yn +

~vB*(Az, — Byy))|| =0,
(¢) {zn}22, converges strongly to (p,q) € T

Proof: Set By := df and By := dg. Hence the result is obtained directly
by Theorem 3.1.

5. CONCLUSION
In this paper:

(1) We obtained strong convergence results from our algorithm with-
out imposing compactness type condition (demi-compactness) on the
mapping S and T" which appear to be a stronger condition.

(2) Chang et al. [14] showed that strong convergence is guaranteed if
the maps S and T are semi-compact whereas the condition is not
required in our theorem.

(3) The efficiency and implementation of iterative algorithm does not
require the calculation or estimation of the operator norms || A|| and
|| B|| which may at times be as difficult as solving the original problem
itself.

(4) Our work unify the split equality fixed point problem, split equality
null point problem and other related fixed point problems.

(5) The above results for quasi-pseudocontractive maps are also valid
for firmly quasi nonexpansive, quasi nonexpansive maps, demicon-
tractive mappings and hence our results improve and extend many
results in the literature [14, 16, 21].
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