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Abstract. We study variational approximations of a dual pair of mathematical program-
ming problems in terms of epi/hypo-convergence and inside epi/hypo-convergence of ap-
proximating Lagrange functions of the pair. First, the Painlevé-Kuratowski convergence
of approximate saddle points of approximating Lagrange functions is established under the
inside epi/hypo-convergence of these approximating Lagrange functions or under types of
inside convergence directly of the data of problems. From this, we obtain a couple of solu-
tions of the pair of problems and a strong duality. Under a stronger variational convergence
called ancillary tight epi/hypo-convergence, we obtain the Painlevé-Kuratowski convergence
of approximate minsup-points and approximate maxinf-points of approximating Lagrange
functions (when approximate saddle points are not necessary to exist).
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1. Introduction
The term “approximation” is common in all areas of mathematics because when facing a

complicated problem, the first and popular idea is studying simpler problems approximating
the original one. Here, approximating problems naturally mean that they converge in a certain
sense to the original one. In optimization, most problems are related to variational properties
such as being their extremum values, minimizers, maximizers, minsup-values, minsup-points,
saddle points, etc. Hence, the most interesting one of the aforementioned senses of con-
vergence is that the convergence preserves variational properties, i.e., such properties of ap-
proximating problems are guaranteed to be preserved for the approximated problem through
this convergence. The term “variational convergence” is used for any type of convergence
ensuring this preseration. So, this is a common terminology for types of convergence, not an
exactly-defined type of convergence.

For constrained minimization, the basic variational convergence is epi-convergence of a
unifunction (called simply a function as well for convenience) φ : X → R ∪ {+∞} with X
being a space, see, e.g., [1, 10] for main properties and applications, as well as relationships
with other convergence concepts. From [7], this convergence is also modified for a finite-
valued function φ : A → R for a nonempty subset A ⊂ X (see Definition 2.2 in Section 2
below). For the last three decades, the model of equilibrium problems has been intensively
considered as a general one including most of optimization-related problems as special cases.
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To see how it can so contain them, consider for instance the simple minimization problem of
finding x̄ ∈ A to minimize φ(x) on A, where A ⊂ X is nonempty, and φ : A → R. Then,
by using the bifunction Φ : A × A → R defined by Φ(x, y) := φ(y) − φ(x) for x, y ∈ A, the
above minimization problem becomes a special case of the so-called equilibrium problem: find
x̄ ∈ A such that Φ(x̄, y) ≥ 0 for all y ∈ A. This bifunction was proposed in [9] and now is
called the Nikaido-Isoda bifunction and the first existence result for an equilibrium problem
was published in [4], but for a period beginning by that paper, the problem was called the Ky
Fan inequality. After the publication [3], such a problem is often said to be an equilibrium
problem.

Equilibrium problems have been also extended to the case that Φ is defined on A × B
with a nonempty set B ⊂ Y ̸= X. Like for various optimization-related problems in gen-
eral, many results for minimization problems can be derived from the correponding ones for
equilibrium problems. However, when dealing with duality properties, this approach is not
useful. Namely, following the duality framework for equilibrium problems, for a primal prob-
lem (stated above), which is also called a Stampacchia equilibrium problem, its dual problem
is the Minty equilibrium problem: find ȳ ∈ A such that Φ(x, ȳ) ≤ 0 for all x ∈ A. Then, the
two dual problems clearly coincide, i.e., this definition of dual problems has no meaning for a
(scalar minimization problem). On the other hand, for such a problem, the more traditional
and important model of duality is the Lagrange duality scheme with the use of a bifunction
being the Lagrangian.

Motivated by the above discussions, in this paper, we study variational approximations
of a mathematical programming problem (the classical model of minimization problem) and
its Lagrange dual. So, we apply variational convergence of bifunctions. Its basic types
are epi/hypo-convergence and lopsided convergence, including minsup-lop-convergence and
maxinf-lop-
convergence. However, the last two concepts are non-symmetric and not suitable for consid-
erations of duality properties. Hence, we choose epi/hypo-convergence and show in Section 3
that our approach is really effective.

As our notations are standard, we mention only several ones. For a metric space X and
A ⊂ X, intA and bdA stand for the interior and boundary, respectively, of A. B(x, r) denotes
the open ball with center x and radius r. ε ↘ 0 means ε ≤ 0 and tending to 0.

For a function φ : X → R̄ := R ∪ {+∞}, its domain, epigraph, and hypograph are
defined by domφ := {x ∈ X | φ(x) < +∞}, epiφ := {(x, r) ∈ X × R | φ(x) ≤ r}, and
hypoφ := {(x, r) ∈ X × R | φ(x) ≥ r}, resp. liminfφ and limsupφ designate the lower and
upper limits of φ, defined, resp, by

liminfx→x̄φ(x) := limδ↘0[infx∈B(x̄,δ)φ(x)] = supδ>0[infx∈B(x̄,δ)φ(x)],

limsupx→x̄φ(x) := limδ↘0[supx∈B(x̄,δ)φ(x)] = infδ>0[supx∈B(x̄,δ)φ(x)].

We adopt the notation

argminAφ :=

{
{x ∈ X | φ(x) = infAφ} if infAφ < +∞,

∅ if infAφ = +∞,

ε-argminAφ :=

{
{x ∈ X | φ(x) ≤ infAφ+ ε} if infAφ < +∞,

∅ if infAφ = +∞,
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and similarly for argmax and ε-argmax. For a sequence of subsets {Ak}k∈N in X, the
lower/inner limit is defined by

LiminfkA
k := {x ∈ X | ∃xk → x with xk ∈ Ak}.

The upper/outer limit is

LimsupkA
k := {x ∈ X | ∃{kl}l, ∃xkl → x with xkl ∈ Akl}.

If LiminfkAk = LimsupkA
k, one says that Ak tends to A in the Painlevé-Kuratowski sense.

In the sequel, we usually use the abbreviations li, ls, Li, Ls for liminf, limsup, Liminf, Limsup,
resp.

2. Preliminaries
2.1. Dual pairs of problems in mathematical programming. Consider the mathemat-
ical programming problem

(NP) minφ(x) s.t. x ∈ A, g(x) ≤ 0, h(x) = 0,

where X, Z and W are normed spaces, A ⊂ X is nonempty, C ⊂ Z is a convex ordering cone,
g : X → Z and h : X → W . For points in Z, we write z1 ≤ z2 if z2 ∈ z1 + C and denote the
feasible region of (NP) by Ω and the solution set of (NP) by Sol(NP). Consider the following
Lagrangian (Lagrange function) of problem (NP)

L(x, µ, ν) := φ(x) + ⟨µ, g(x)⟩+ ⟨ν, h(x)⟩

for x ∈ A and (µ, ν) ∈ C∗ ×W ∗ =: B, with Z∗ and W ∗ being the topological dual spaces of
Z and W , resp, and C∗ := {y∗ ∈ Z∗ | ⟨y∗, y⟩ ≥ 0 for all y ∈ C} is the positive dual cone of C.

Now we clarify basic definitions and facts about (NP) and its dual. Some of them are known.
However, to make the research situation clear and avoid confusions, we systematically discuss
beriefly but enough detail because it may not easy to find reference material. It is convenient
to write (NP) in the following equivalent minsup problem for L

(MisP) minx∈Asup(µ,ν)∈BL(x, µ, ν).

The solution set of (MisP) is denoted by Sol(MisP), which is also called the set of minsup
points of L, denoted by misL. The equivalence of (NP) and (MisP) means that the optimal
values and the solution sets are equal. To see this equivalence, observe that

sup(µ,ν)∈B(⟨µ, g(x)⟩+ ⟨ν, h(x)⟩) =

{
0 if g(x) ≤ 0,h(x) = 0,

∞ otherwise.

Hence,
minx∈Asup(µ,ν)∈BL(x, µ, ν) = minx∈Ωφ(x).

The function ζ(x) := sup(µ,ν)∈BL(x, µ, ν) is called the sup-projection of bifunction L (of two
components x and (µ, ν)). Then, (NP) can be rewritten also as minx∈Aζ(x). From now on,
we write simply minA instead of minx∈A if there is no thread of confusion and no need to
emphasize x; and the same for infima, suprema, etc.

Define η(µ, ν) = infx∈AL(x, µ, ν) and call it the inf-projection of L. Then, the Lagrange
dual problem (DNP) of (NP) is defined as

(DNP) max(µ,ν)∈Bη(µ, ν).
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To see more clearly the duality nature, we rewrite (DNP) as the maxinf problem

(MaiP) max(µ,ν)∈Binfx∈AL(x, µ, ν).

Let Sol(DNP), Sol(MaiP), and maiL stand for the solution sets of (DNP), (MaiP), and the
set of maxinf points of L, resp. Of course, the three sets are equal.

For all x ∈ Ω and (µ, ν) ∈ B, one has
η(µ, ν) = infx′∈AL(x′, µ, ν) ≤ L(x, µ, ν) ≤ φ(x).

So, η(µ, ν) ≤ φ(x). This property (holds for all feasible points of (NP) and (DNP) in any
Lagrange duality scheme) is called the weak duality. Hence,

sup(µ,ν)∈Bη(µ, ν) = sup(µ,ν)∈Binfx′∈AL(x′, µ, ν)

(2.1) ≤ infx∈Asup(µ,ν)∈BL(x, µ, ν) = infx∈Ωφ(x).

If the two optimal objective values are attained and equal and there exist solutions of (NP) and
(DNP) (i.e., misL and maiL are nonempty): minx∈Ωφ(x) = max(µ,ν)∈Bη(µ, ν), then we say
that the strong duality holds or the duality gap is zero (or without duality gap). Otherwise,
we say that the duality gap is nonzero (or with a duality gap).

We provide several simple nonlinear problems with different situations about duality.

Example 2.1 (linear discrete programs with or without duality gap) Consider the problem,
for φ, h : R2 → R,

minφ(x) = −2x1 + x2

s.t. h(x) = x1 + x2 − 3 = 0,

x ∈ A := {(0, 0), (0, 3), (1, 3), (2, 1)}.
Substituting −x1 = x2 + 3 into φ, (NP) becomes minx∈A(3x2 − 6). So, the solution is
x̄ = (2, 1) with φ(x̄) = −3. If we solve (MisP), i.e., minx∈Aζ(x), we obtain the minimizer
x̄ = (2, 1) with ζ(2, 1) = −3 because ζ(x) tends to ∞ at x = (0, 0) (when ν → −∞) and at
x = (1, 3) (when ν → ∞), and ζ(x) equals to 3 at x = (0, 3) and to −3 at x = (2, 1). Hence,
minx∈Amaxν∈RL = −3 attains at x̄ = (2, 1) for any ν̄ ∈ R. Considering (DNP), we obtain
η(ν) = min{−3ν, 3, 1+ν,−3} (these values attain at x equal to (0, 0), (0, 3), (1, 3), and (2, 1),
resp). Hence, maxν∈Rη(ν) = −3 achieves at x̄ = (2, 1) and ν ∈ [−4, 1]. Therefore, we have a
strong duality and Sol(NP)= {(2, 1)} and Sol(DNP)= [−4, 1] (we see that any point (x̄, ν̄) ∈
Sol(NP)×Sol(DNP) is a saddle point of L), though the set of minmax points is {(2, 1)} × R.

Now we modify the problem, taking the new set
A = {(0, 0), (0, 4), (4, 4), (4, 0), (1, 2), (2, 1)}

and keeping the same φ and h. Then similarly, we see that the solution of (NP) is x̄ = (2, 1)
with φ(x̄) = −3. By direct calculations, we have

η(ν) =


−4 + 5ν if ν ≤ −1,

−8 + ν if − 1 ≤ ν ≤ 2,

−3ν if ν ≥ 2.

The solution is ν̄ = 2 with η(ν̄) = −6. So, the primal optimal value and the dual optimal
value are different, i.e., we have a duality gap.
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Example 2.2 (convex program with a duality gap) Consider the problem

minx2

s.t. g1(x) = 1− x1 ≤ 0, g2(x) = x21 + x22 − 1 ≤ 0

(so, the objective is linear and the feasible region is convex). It is easy to see that the unique
(optimal) solution is (x̄1, x̄2) = (1, 0) with the optimal objective value equal zero.

For the dual problem, we have

η(µ) = infx∈R2L(x, µ) =

−∞ if µ1 = µ2 = 0 when x2 → −∞,

−µ2 if µ1 = 0, µ2 > 0 (attained at x1 = x2 = 0),

−∞ if µ1 > 0, µ2 = 0 (when x2 → −∞),

−(4µ2)
−1 + µ1 − µ2 − µ2

1(4µ2)
−1

if µ1, µ2 > 0 (attained at x1 = µ1(2µ2)
−1, x2 = −(2µ2)

−1).

Hence,

maxµ∈Bη(µ) = max

{
−µ2 if µ1 = 0, µ2 > 0,

−(4µ2)
−1 + µ1 − µ2 − µ2

1(4µ2)
−1 if µ1 > 0, µ2 > 0.

One sees that supµ∈Bη(µ) = 0, but the maximum in not achieved. Therefore, in (2.1) for
this pair of dual problem, one has the equality supinf = infsup, but one still does not have a
strong duality between (NP) and (DNP), because (DNP) does not have solutions.

Now we provide a case that the strong duality holds for a nonconvex (so nonlinear) program.

Example 2.3 (nonconvex program with a strong duality) Consider the case x ∈ R, φ(x) =
√
x,

g(x) = x − 3 and A = R+. Then, clearly x̄ = 0 is the unique primal optimal solution with
φ(x̄) = 0. For each µ ≥ 0, η(µ) = minx≥0(

√
x+ µ(x− 3)) = −3µ (attained at x = 0). Hence,

maxµ≥0η(µ) = 0 attained at µ = 0 which is the unique dual optimal solution, and we have a
strong duality.

Strong duality in duality schemes defined via bifunctions (not only for Lagrange duality) is
closely connected with saddle points. For the Lagrange function, we have the following basic
concepts of points related to extrema.

Definition 2.1. (i) A point x̄ ∈ A is called a minsup-point (maxinf-point, respectively
(resp)) of L, denoted by x̄ ∈ misL ((µ̄, ν̄) ∈ maiL), if

sup(µ,ν)∈BL(x̄, (µ, ν)) = minx∈Asup(µ,ν)∈BL(x, (µ, ν))

(infx∈AL(x, (µ̄, ν̄)) = max(µ,ν)∈Binfx∈AL(x, (µ, ν)), resp).
When x̄ ∈ misL, (x̄, (µ̄, ν̄)) is termed a minmax-point of L, denoted by (x̄, (µ̄, ν̄)) ∈
mimaL, if (µ̄, ν̄) ∈ argmax(µ,ν)∈BL(x, (µ, ν)) (a maxmin-point (x̄, (µ̄, ν̄)) ∈ mamiL is
defined similarly).

(ii) A point (x̄, (µ̄, ν̄)) ∈ A×B is said to be a saddle point of L, denoted by (x̄, (µ̄, ν̄)) ∈
sdlL, for all x ∈ A and (µ, ν) ∈ B, if L(x̄, (µ, ν)) ≤ L(x̄, (µ̄, ν̄)) ≤ L(x, (µ̄, ν̄)).

Clearly, a point (x̄, (µ̄, ν̄)) is a saddle point of L if and only if (x̄, (µ̄, ν̄)) ∈ mimaL∩mamiL.
Observe that in Example 2.3, (0, 0) ∈ sdlL.
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To study variational approximations of a dual pair of mathematical programming problems
in the next section, we need the following concepts of approximate saddle points and approx-
imate solutions of (NP) and (DNP). For ε ≥ 0, a point x̄ε ∈ Ω is called an ε-solution of (NP),
denoted by x̄ε ∈ ε-Sol(NP), if φ(x̄ε) ≤ infx∈Ωφ(x)+ε. Then, clearly x̄ε is also an ε-minimizer
of ζ (on A), i.e., x̄ε ∈ ε-minζ, and also an ε-minsup point of L, denoted by x̄ε ∈ ε-misL, in
the sense that

supBL(x̄ε, µ, ν) ≤ minAsupBL(x, µ, ν) + ε.

Similarly, ε-Sol(DNP) = ε-maxη = ε-maiL. Observe that x̄ε ∈ ε-misL and (µ̄ε, ν̄ε) ∈ ε-maiL
at the same time mean that
(2.2) maxBinfAL − ε ≤ L(x̄ε, µ̄ε, ν̄ε) ≤ minAsupBL+ ε.

By definition, (x̄ε, (µ̄ε, ν̄ε)) is an ε-saddle point of L, denoted by (x̄ε, (µ̄ε, ν̄ε)) ∈ ε-sdlL, if one
has (stronger than (2.2))

L(x̄ε, µ, ν)− ε ≤ L(x̄ε, µ̄ε, ν̄ε) ≤ L(x, µ̄ε, ν̄ε) + ε

for all x ∈ A and (µ, ν) ∈ B. Evidently, (x̄ε, (µ̄ε, ν̄ε)) ∈ ε-sdlL if and only if (x̄ε, (µ̄ε, ν̄ε)) is
both an ε-minmax point and ε-maxmin point of L in the sense that

maxBL(x̄ε, µ, ν)− ε ≤ L(x̄ε, µ̄ε, ν̄ε) ≤ minAL(x, µ̄ε, ν̄ε) + ε.

2.2. Variational convergence. We present briefly the definitions and properties of varia-
tional convergence needed for the subsequent section.

In this subsection let X, Y be metric spaces. First, consider A,Ak ⊂ X, φk : Ak → R, and
φ : A → R.

Definition 2.2. (epi-convergence [7], inside epi-convergence [6]) {φk}k is called epi-convergent
to φ, denoted by φk e→ φ or φ = e-limkφ

k if the following conditions are satisfied
(a) for all xkj ∈ Akj → x, liminfjφkj (xkj ) ≥ φ(x) if x ∈ A and φkj (xkj ) → +∞ if x /∈ A;
(b) for all x ∈ A, there exists xk ∈ Ak → x such that limsupkφ

k(xk) ≤ φ(x).
Omitting the case that x /∈ A with the infinity condition, one has inside epi-convergence.

The above definition of the basic variational convergence was first introduced in [12] for
functions φk : X → R ∪ {+∞} and has been developed with many applications (see, e.g.,
[1, 10]). In [7], the above Definition 2.2 for epi-convergence together with a modification for
finite-valued bifunctions Φ : A×B → R of the concept of misup-lop-convergence defined in [2]
(for Φ : X×Y → R∪{+∞}∪{−∞}) in order to apply more effectively to practical problems
involving finite-valued bifunctions. The weaker notion of inside epi-convergence was recently
proposed in [6] with effective applications in approximations. A notion symmetric to epi-
convergence (and strongly concerned when maximization is considered) is: a sequence {φk}k
is called hypo-convergent to φ, denoted by φk h→ φ or φ = h-limkφ

k, if {−φk}k epi-converges
to −φ. Hence, φk h→ φ means the following two conditions (symmetric to the above (a) and
(b) for epi-convergence) are satisfied

(a’) for all xkj ∈ Akj → x, limsupjφ
kj (xkj ) ≤ φ(x) if x ∈ A and φkj (xkj ) → −∞ if x /∈ A;

(b’) for all x ∈ A, there exists xk ∈ Ak → x such that liminfkφk(xk) ≥ φ(x).
Omitting the case that x /∈ A with the infinity condition, one has inside hypo-convergence.
The basic variational properties of epi-convergence are

Proposition 2.3. (see, e.g., [6])
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(i) If {φk}k satisfies Definition 2.2 (b) of inside epi-convergence, then
limsupk(infAkφk) ≤ infAφ.

(ii) If φk e→ φ, then for any εk → 0+, Limsupkε
k-argminAkφk ⊂ argminAφ.

Now consider A,Ak ⊂ X, B,Bk ⊂ Y , and (finite-valued) bifunctions Φk : Ak × Bk → R
and Φ : A×B → R.
Definition 2.4. (epi/hypo convergence [5], inside epi/hypo-convergence [6]) Bifunctions Φk,
are called epi/hypo convergent (e/h-convergent) to a bifunction Φ if
(a) for all xkj ∈ Akj → x ∈ A and y ∈ B, there exist ykj ∈ Bkj → y such that

liminfjΦkj (xkj , ykj ) ≥ Φ(x, y), and for all xkj ∈ Akj → x /∈ A, there exist ykj ∈ Bkj

such that Φkj (xkj , ykj ) → +∞;
(b) for all ykj ∈ Bkj → y ∈ B and x ∈ A, there exist xkj ∈ Akj → x such that

limsupjΦ
kj (xkj , ykj ) ≤ Φ(x, y), and for all ykj ∈ Bkj → y /∈ B, there exist xkj ∈ Akj

such that Φkj (xkj , ykj ) → −∞.
The inside epi/hypo-convergence (inside e/h-convergence or i-e/h-convergence) of Φk to Φ
means that the above (a) and (b) without the infinity conditions when x /∈ A and y /∈ B are
satisfied.

Observe the crucial feature of epi/hypo-convergence and inside epi/hypo-convergence that
they are completely symmetric (between x and y, liminf and limsup, ≥ and ≤, and +∞ and
−∞). That is why this convergence is effective for considerations of duality properties in
optimization-related problems. There are also other types of symmetric variational conver-
gence for bifunctions on A×B such as continuous convergence or graph convergence, but they
are very restrictive/narrow and so difficult to be satisfied and almost useless (these types of
convergence are almost not mentioned in papers on variational convergence of bifunctions and
applications). Types of epi/hypo-convergence are basic and the only useful one of symmetric
convergence. The same definition of epi/hypo-convergence as above (with small mistakes in
the statement) for the case X and Y are finite dimensional is proposed in [5]. The concept
of inside epi/hypo-convergence is introduced in [6]. But, mathematical programming prob-
lems are not considered in these papers. The other basic types of variational convergence
of bifunctions, minsup-lop-convergence and maxinf-lop-convergence, are non-symmetric (see
[7, 8, 11]) and difficult for such consideration and we are not concerned in this paper, as we
are interested in dual problems in nonlinear programming.

3. Variational approximations of a dual pair of problems in mathematical
programming

By variational approximations of a problem, we mean a sequence of problems whose con-
vergence (in some sense) preserves variational properties of the problems in the sequence for
its limits. In this paper, we show that inside e/h-convergence and e/h-convergence guarantee
this preservation for both problems in a dual pair. We also call this sequence a sequence
of approximating problems and call the primal problem the original problem. Here, varia-
tional properties mean those about saddle points, weak saddle points, minsup-points, sup-
projections, optimal solutions, optimal values of objectives, etc. We call any convergence with
such a preservation properties a variational convergence. So, this is a common terminology
for types of convergence, not an exactly-defined type of convergence, and e/h-convergence
and i-e/h-convergence are special cases of variational convergence, which are suitable for vari-
ational approximations of both problems in a dual pair of nonlinear programming problems.
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Note that, as mentioned in Section 1, basic types of variational convergence of bifunctions
are epi-hypo-convergence, minsup-lop-convergence, and maxinf-lop-convergence. But, the two
types of lopsided convergence are not symmetric and not suitable for considerations of duality
properties in optimization. In this paper, we study variational approximations of dual prob-
lems in mathematical programming via variational convergence of Lagrange functions Lk of
approximating problems. We need first the following definition.

Theorem 3.1. (convergence of approximate saddle points) Assume that Lk i−e/h→ L, εk ↘
ε ≥ 0, (x̄k, (µ̄k, ν̄k)) is an εk-saddle point of Lk for k ∈ N, and (x̄, (µ̄, ν̄)) belongs to
A × B and is a cluster point of this sequence, i.e., for some sequence N ⊂ N, (x̄, (µ̄, ν̄)) =
limk∈N (x̄k, (µ̄k, ν̄k)). Then, (x̄, (µ̄, ν̄)) is an ε-saddle point of L and L(x̄, (µ̄, ν̄)) = limk∈N Lk(x̄k, (µ̄k, ν̄k)).

Proof We can assume that N = N for simplicity of notations. For any (x, (µ, ν)) ∈ A × B,
all sequences (xk, (µk, νk)) ∈ Ak ×Bk → (x, (µ, ν)) satisfy the εk-saddle inequalities

Lk(x̄k, (µk, νk))− εk ≤ Lk(x̄k, (µ̄k, ν̄k)) ≤ Lk(xk, (µ̄k, ν̄k)) + εk.

Hence,

sup{(µk,νk)∈Bk→(µ,ν))}lik(Lk(x̄k, (µk, νk))− εk) ≤ likLk(x̄k, (µ̄k, ν̄k))

≤ lskLk(x̄k, (µ̄k, ν̄k)) ≤ inf{xk∈Ak→x}lsk(Lk(xk, (µ̄k, ν̄k)) + εk).

By the definition of i-e/h-convergence, (x̄, ȳ) ∈ ε-sdlL as, for all (x, (µ, ν))
∈ A×B,

L(x̄, (µ, ν))− ε ≤ sup{(µk,νk)∈Bk→(µ,ν)}lik(Lk(x̄k, (µk, νk))− εk)

≤ inf{xk∈Ak→x}lsk(Lk(xk, (µ̄k, ν̄k)) + εk) ≤ L(x, (µ̄, ν̄)) + ε.

To check that L(x̄, (µ̄, ν̄)) = limk∈N Lk(x̄k, (µ̄k, ν̄k)), simply observe that the i-e/h-convergence
and x̄k → x̄ ensure the existence of (µk, νk) ∈ Bk → (µ, ν) with

L(x̄, (µ̄, ν̄)) ≤ likLk(x̄k, (µk, νk)) ≤ lik(Lk(x̄k, (µ̄k, ν̄k)) + εk)

= likLk(x̄k, (µ̄k, ν̄k)).

A similar argument gives L(x̄, (µ̄, ν̄)) ≥ lskLk(x̄k, (µ̄k, ν̄k)). □

Proposition 3.2. (relations between sdlL and Sol(NP), Sol(DNP)) (x̄, (µ̄, ν̄))
∈ sdlL if x̄ ∈ Sol(NP) and (µ̄, ν̄) ∈ Sol(DNP), and the two optimal values are equal. Con-
versely, (x̄, (µ̄, ν̄)) ∈ sdlL implies the latter fact and also ⟨µ̄, g(x̄)⟩ = 0.

Proof. x̄ ∈ Sol(NP), i.e., x̄ ∈ misL, means

φ(x̄) + supµ∈C∗⟨µ, g(x̄)⟩ = infx∈A(φ(x) + ⟨µ̄, g(x)⟩).

As maxµ∈C∗⟨µ, g(x̄)⟩ = ⟨µ̄, g(x̄)⟩ = 0, substituting µ̄ into the left-hand side of the above
equality, we have both saddle inequalities.

Conversely, as (x̄, (µ̄, ν̄)) ∈ mimaL∩mamiL, x̄ ∈ misL and (µ̄, ν̄) ∈ maiL, and so is a
solution of (NP) and (DNP), resp. Clearly the two optimal values being the minsup-value
and maxinf-value, resp, are equal to the saddle value L(x̄, (µ̄, ν̄)). Moreover, the left-hand
saddle inequality φ(x̄) + ⟨µ, g(x̄)⟩ ≤ φ(x̄) + ⟨µ̄, g(x̄)⟩ for all µ ∈ C∗ shows that ⟨µ̄, g(x̄)⟩ must
be zero. □
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Corollary 3.3. Assume that Lk i−e/h→ L, εk ↘ 0, (x̄k, (µ̄k, ν̄k)) is an εk-saddle point of Lk

for k ∈ N, and (x̄, (µ̄, ν̄)) belongs to A×B and is a cluster point of this sequence. Then, x̄ ∈
Sol(NP) and (µ̄, ν̄) ∈ Sol(DNP), the two optimal values are equal, and ⟨µ̄, g(x̄)⟩ = 0.

Proof. Simply apply Theorem 3.1 and Proposition 3.2. □
Clearly, taking εk ≡ 0 in the above result yields a sufficient condition for the convergence

of (exact) saddle points.
In the following consequence of Theorem 3.1 and Corollary 3.3, we obtain solutions of

(NP) and (DNP) from limits of εk-sdlLk, but using assumptions direct on the data of the
mathematical programming problem.

Theorem 3.4. (convergence of approximate saddle points under assumptions on the data
of (NP)) Assume that εk ↘ 0, (x̄k, (µ̄k, ν̄k)) is an εk-saddle point of Lk for k ∈ N, and
(x̄, (µ̄, ν̄)) ∈ A×B is a cluster point of this sequence. Assume further that

(i) φk, and for all (µ, ν) ∈ B, ⟨µ, gk⟩ and ⟨ν, hk⟩ satisfy condition (a) of inside epi-
convergence of φk, ⟨µ, gk⟩, and ⟨ν, hk⟩, resp;

(ii) φk satisfies (b) of i-epi-convergence and the bifunctions (x, µ) 7→ ⟨µ, gk(x)⟩ and (x, ν) 7→
⟨ν, hk(x)⟩ satisfy (b) of i-e/h-convergence.

Then, (x̄, (µ̄, ν̄)) is a saddle point of L, and so x̄ is a solution of (NP), (µ̄, ν̄) is a solution of
(DNP) and ⟨µ̄, g(x̄)⟩ = 0.

Proof In view of Theorem 3.1 and Corollary 3.3, we only need to verify the i-e/h-convergence
of Lk. First, we check condition (a) of i-e/h-convergence. For any (µ, ν) ∈ B and xkj ∈ Akj →
x ∈ A, we take (µkj , νkj ) ≡ (µ, ν). Then, by (i), one has (a) of the indide e/h-convergence of
Lk:

lij(Lkj (xkj , µkj , νkj )− L(x, µ, ν)) ≥ lijφ
kj (xkj )− φ(x)

+lij⟨µ, gkj (xkj )− g(x)⟩+ lij⟨ν, hkj (xkj )− h(x)⟩ ≥ 0.

Using assumption (ii), we verify (b) of i-e/h-convergence of Lk: for all (µkj , νkj ) ∈ Bkj →
(µ, ν) ∈ B and x ∈ A, there exist xkj → x such that

lsj [φ
kj (xkj ) + ⟨µkj , gkj (xkj )⟩+ ⟨νkj , hkj (xkj )⟩] ≤ lsjφ

kj (xkj )

+lsj⟨µkj , gkj (xkj )⟩+ lsj⟨νkj , hkj (xkj )⟩

≤ φ(x) + ⟨µ, g(x)⟩+ ⟨ν, h(x)⟩.
□

Although the assumed i-e/h-convergence in the above results is a weak condition, the ex-
istence of approximate saddle points of Lk is a restrictive condition, which means, roughly
speaking that for all k, the pair of dual problems (NPk) and (DNPk) satisfy an approximate
strong duality. However, in many cases, only one of the two problems, say (NPk) for instance,
have approximate solutions, i.e., only the set approximate misLk are nonempty and we need
their convergence to misL. Then, we can apply also e/h-convergence, but we need the follow-
ing additional notions and facts. We also need to recall the equivalent geometric formulation
of epi-convergence (see, e.g., [1]): for a metric space X (as in Section 2), φk : X → R epi-
converge to φk : X → R if and only if epiφk converge to epiφ in the Painlevé-Kuratowski set
convergence. (This is just the origin of the terminology “epi-convergence”.) The correspond-
ing statement for hypo-convergence is obtained by replacing “epi-” by “hypo-”.
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Now proceed to the above issue on misL. A function ζ : A → R∪{+∞} (η : B → R∪{−∞},
resp) is called the sup-projection (inf-projection, resp) of the Lagrange function L if, for x ∈ A
((µ, ν) ∈ B, resp),

ζ(x) := sup(µ,ν)∈BL(x, (µ, ν)) (η(µ, ν) := infx∈AL(x, (µ, ν)), resp).
Note that x̄ ∈ ε-argminζ if and only if x̄ is an ε-minsup point of L and (µ̄, ν̄) ∈ ε-argmaxη if
and only if (µ̄, ν̄) is an ε-maxinf point of L.

Definition 3.5. (a) (x-ancillary e/h-convergence) Lk is called x-ancillary e/h-convergent
to L if (a) of the e/h-convergence of Lk and the following condition is satisfied

(b′) ∀x ∈ A, ∀(µk, νk) ∈ Bk → (µ, ν) ∈ B, ∃xk ∈ Ak → x, lskζk(xk) ≤ ζ(x).
(b) ((µ, ν)-ancillary e/h-convergence) Lk is called (µ, ν)-ancillary e/h-

convergent to L if (b) of the e/h-convergence is fulfilled together with the condition
(a′) ∀(µ, ν) ∈ B, ∀xk ∈ Ak → x, ∃(µk, νk) ∈ Bk → (µ, ν), likηk(µk, νk) ≥ η(µ, ν).

Observe that the two parts in Definition 3.5 are also symmetric (like in the definition of
e/h-convergence) and not (directly) connected with compactness, while the known tightness
conditions for minsup-lop-convergence and maxinf-lop-convergence represent types of relaxed
uniform compactness conditions, see [7, 11]. The above convergence results show that i-e/h-
convergence is useful for considering saddle points and duality (while quite different, tight
minsup-lop-convergence is appropriate only for minsup-points and maxinf-lop-convergence is
defined separately and applied to maxinf-points, see [7, 8, 11]). Even when both minsup-
lop-convergence and maxinf-lop-convergence are tight (a strong assumption), we hardly have
conclusions about convergence of saddle points or approximate saddle points. We will now see
that applying tight e/h-convergence, we obtain also convergence results for the nonsymmetric
objects minsup- and maxinf-points.
Theorem 3.6. (convergence of minsup-points). Let the e/h-convergence of Lk to L be x-
ancillary tight and the domains of ζk, ζ be nonempty (except possibly for a finite number of
k). Then,

(i) e-limkζ
k = ζ;

(ii)
lsk[infx∈Aksup(µ,ν)∈BkLk(x, (µ, ν))] ≤ infx∈Asup(µ,ν)∈BL(x, (µ, ν)).

Moreover, if for a subsequence {kj}j one has xkj ∈ misLkj and limjx
kj

= x̄, then x̄ ∈ misL (i.e., LskmisLk ⊂ misL) and
limj(sup(µ,ν)∈BkjLkj (xkj , (µ, ν))) = sup(µ,ν)∈BL(x̄, (µ, ν)),

that is, the minsup-values of Lkj converge to that of L.
Proof (i) Applying the geometric formulation of epi-convergence, we show first Lsk(epiζk) ⊂
epiζ. Take any (x, α) in the left-hand side. Then, there exist (xkj , αkj ) ∈ epiζkj conversing
to (x, α). We claim that x ∈ domζ. Clearly, x must be in A, for otherwise condition (a)
of Definition 3.5 yields (µkj , νkj ) ∈ Bkj such that Lkj (xkj , (µkj , νkj )) → +∞ contradicting
the fact that αkj ≥ sup

BkjLkj (xkj , ·) and αkj → α. Suppose x ∈ A\domζ. Then, for any
γ > α, there exists (µγ , νγ) ∈ B with L(x, (µγ , νγ)) > γ. In view of the aforementioned (a),
there exist (µ

kj
γ , ν

kj
γ ) ∈ Bkj → (µγ , νγ) such that lijLkj (xkj , (µ

kj
γ , ν

kj
γ )) ≥ L(x, (µγ , νγ)). So,

we arrive at the contradiction
α = limjα

kj ≥ lijζ
kj (xkj ) ≥ lijLkj (xkj , (µ

kj
γ , ν

kj
γ )) ≥ L(x, (µγ , νγ)) > γ > α.
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Therefore, the claim x ∈ domζ is proved.
For any ε > 0, there exists (µε, νε) ∈ B with L(x, (µε, νε)) ≥ ζ(x) − ε. The condition (a)

again yields (µ
kj
ε , ν

kj
ε ) ∈ Bkj → (µε, νε) such that

lijζ
kj (xkj ) ≥ lijLkj (xkj , (µ

kj
ε , ν

kj
ε )) ≥ L(x, (µε, νε)) ≥ ζ(x)− ε.

Therefore, by the arbitrariness of ε, Lsk(epiζk) ⊂ epiζ because

α = limjα
kj ≥ lijζ

kj (xkj ) ≥ ζ(x).

Next, we prove the inclusion epiζ ⊂ Lik(epiζk). By Definition 3.5, for any (x, α) ∈ epiζ
and (µk, νk) ∈ Bk → (µ, ν) ∈ B, there exist xk ∈ Ak such that lskζ(xk) ≤ ζ(x). We find
(xk, γ

k) ∈ epiζk as follows. For k with ζk(xk) ≤ α, take γk = α. Consider k with ζk(xk) > α.
As lskζk(xk) ≤ ζ(x) by (b′), taking arbitrarily εk ↘ 0, one has ζk(xk) ≤ ζ(x)+ εk for large k.
Then, ζ(x) ≤ α < ζk(xk) ≤ ζ(x) + εk with the last side tending to ζ(x). Finally, for k with
ζk(xk) > α, choosing γk = ζk(xk), one has (xk, γ

k) ∈ epiζk tending to (x, α).
(ii) Applying assertion (i), and the properties of epi-convergence recalled in Section 2, one

obtains this assertion.
□

Corollary 3.7. (convergence of maxinf-points) Let the e/h-convergence of Lk to L be (µ, ν)-
ancillary tight and the domains of ηk, η be nonempty (except possibly for a finite number of
k). Then,

(i) h-limkη
k = η;

(ii)
lik[sup(µ,ν)∈Bk infx∈AkLk(x, (µ, ν))] ≥ sup(µ,ν)∈Binfx∈AL(x, (µ, ν)).

Moreover, if for a subsequence {kj}j one has (µkj , νkj ) ∈ maiLkj and limj(µ
kj , νkj ) =

(µ̄, ν̄), then (µ̄, ν̄) ∈ maiL (i.e., LskmaiLk ⊂ maiL) and

limj(infx∈AkjLkj (x, (µkj , νkj )) = infx∈AL(x, (µ̄, ν̄)),

that is, the maxinf-values of Lkj converge to that of L.
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