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Abstract. The finite difference-self consistent field iteration is presented to solve some non-
linear eigenvalue differential equations. Some properties of the self consistent field iteration
and finite difference methods required for our subsequent development are given. Numerical
examples are included to demonstrate the validity and applicability of the present technique.
A comparison is also made with the existing results. The method is easy to implement and
yields accurate results.
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1. Introduction
There are some papers in which non-linear eigenvalue differential equation are studied (see [5,
10]). This type of problem arises in physics, dynamic system, electronic structure calculations,
etc (see [8, 11, 15]). In this paper we consider the non-linear eigenvalue differential equation

(1.1) cY ′′(x) + U(x)Y ′(x) + V (x)Y (x) +Q(x)Y 3(x) = EY (x),

∫ b

a
Y 2(x)dx = 1

on (a, b), within homogeneous boundary conditions Y (a) = Y (b) = 0, where unknown value
E and function Y (x) are eigenvalues and corresponding eigenfunctions, respectively. Also
U(x), V (x) and Q(x) are known functions. For some function V (x), the equation 1.1 have
analytical solution [3, 4, 6]. But some other, have not exact solution and they must be solved
with the numerical methods. So far different numerical methods have been used to solve
Eq.1.1 by several authors, such variational method [1, 9], fixed point method [16], homotopy
analysis method [2], NU method [14], etc. The present paper is devoted to the numerical
solution of the Eq. 1.1 by using the finite difference-self consistent field iteration (FDSCF)
method. In order to show the accuracy and robustness of the proposed schema, some examples
with exact solutions are considered. This paper is organized as follows: Section 2 contains
the preliminary concepts, definitions and notations of the self consistent. In Sections 3, we
present the matrix of Eq. 1.1 by FDSCF method. Section 4 is devoted to the numerical
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solution of some examples by the mentioned methods. Finally, a brief conclusion is presented
in Section 5.

2. Preliminaries and Notations
Let the non-linear eigenvalue problem:

(2.1) H(X)X = ΛX

where X ∈ Rn×1, XTX = I, H(X) ∈ Rn×n is a matrix that has a special structure and
Λ ∈ R is a diagonal matrix consisting of the smallest eigenvalues of H(X). Some researches
in [12, 17] investigated the convergence of Self consistent field iteration(SCF) which defined
as follow to solve problem 2.1:

(2.2)

Pick any initial guess X(0)

1. For i = 1, 2, ... until convergence
2. Construct H(i) = H(X(i−1))

3. Compute X(i) such that H(i)X(i) = X(i)Λ(i) and Λ(i) contains
the smallest eigenvalues of H(i)

4. End for

Yang et al. in [17] show that for some class of problems, the SCF iteration produces a
sequence of approximate solution that contain two convergent subsequence. They use of the
standard distance measure [7] between tow columns X,Y ∈ Rn×k i.e., if XTX = Y TY = Ik,

dist(X,Y ) = ∥XXT − Y Y T ∥2
where for every matrix A ∈ Rm×n,

∥A∥2 = sup
x ̸=0

∥Ax∥2
∥x∥2

They obtained the following theorem:

Theorem 2.1. Let X(0) ∈ Rn×k be the initial guess to the solution of the non-linear eigenvalue
problem 2.1 that satisfies X(0)TX(0) = Ik. If columns of X(i) ∈ Rn×k contain eigenvectors
associated with the smallest k eigenvalues of H(X(i−1)), as we would obtain when applying
the SCF iteration to problem 2.1, and if the gap between the kth and the k+1st eigenvalues of
H(X(i)) is greater than or equal to δ > 0 for all i, then

lim
i→∞

dist2(Xi+ 2, Xi) = 0.

In this paper, we obtain the matrix H by the finite difference method and use the SCF
iteration to solve the problem 1.1. In continue, we present a brief overview of finite difference.

3. Main Results
In this section we obtain the matrix generated by the finite differential method. For this,

let N be a positive integer, h = b−a
N and xj = a+ jh for j = 0, ..., N . Now by the differential

method, Eq. 1.1, can be written as:

(3.1) c
Yj−1 + Yj+1 − 2Yj

h2
+ Uj

Yj+1 − Yj
h

+ ViYj +Qj |Yj |2Yj = EYj
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where the eigenfunction satisfies the boundary conditions Y0 = Yn = 0. Let

(3.2) pj,j =
−2c

h2
− Uj

h
+ Vj , pj−1,j = pj−1,j =

c

h2
+

Uj

h
for j = 1, ..., N − 1. Then, we can write system 3.1 as
(3.3) (X +QZ)Y = EY

where

X=



p1,1 p1,2 0 0 0 · · · 0
p2,1 p2,2 p2,3 0 0 · · · 0
0 p3,2 p3,3 p3,4 0 · · · 0
0 0 p4,3 p4,4 p4,5 · · · 0
...

... . . . . . . . . . · · ·
...

0 0 0 0 0 · · · pn−1,n−1



Q=


q1 0 · · · 0
0 q2 0
... . . . ...
0 0 qn−1


Y =

 y1
...

yn−1


and Z = (DiagY )2. Now we must solve the non-linear eigenvalue problem H(Y )Y = EY
where

H(Y ) = X +Q(DiagY )2 :

For this end, let Z0 = 0. We use the following Algorithm to solve non-linear eigenvalue
problem 3.3.
1. For i = 1, 2, ... until convergence
2. Construct H(i) = X +QZ(i−1)

3. Compute F (i) such that H(i)F (i) = F (i)H(i), and E(i) contains the smallest eigenvalues of
H(i)

4. Construct Y (i) such that Y (i) = F (i)

∥F (i)∥
5. Construct Z(i) = (DiagY (i))2

6. End for
So, we can obtain the eigenvalues and eigenfunctions of Eq. 1.1.

4. Numerical results
In this section, we consider Eq. 1.1 through various functions V (x). We denote the

eigenvalues of Eq. 1.1 with Ei. Moreover, we report the CPU time for our method. All
computations were carried out using Maple software on a personal computer.

Example 4.1. Consider Eq. 1.1 on (−1, 1) with c = −1
2 and U(x) = V (x) = 0. In [13], the

eigenvalues are obtained by using the elliptic functions. Let N = 100 be the number of nods
and i = 10 be the number of iterations. Table 1 and 2 represent the eigenvalues obtained
from reference [13] and FDSCF for Q(x) = −1 and Q(x) = −5, respectively as well as the
absolute error of FDSCF method with Error = ∥ERef13 − EFDSCF ∥. In figure 1, we show
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the convergence of this method through variation of the minimum eigenvalue as a function
of the number of nodes and the number of iterations for Q = −1. Also, in figure 2, we show
the convergence of this method through variation of the minimum eigenvalue as a function
of the number of nodes and the number of iterations for Q(x) = −5. Figure 3, shows the
convergence of this method through variation of the minimum eigenvalue as a function of Q.
This figure shows that the method work better, for smaller values of the non-linear coefficient
|Q|. We observe that the error of our method is smaller when the non-linear parameter |Q| is
smaller. However this is true for smaller eigenvalues. Also in figure 4, we see that for larger
eigenvalues, we have not a rule of thumb???? for larger value of the eigenvalues.

Eigenvalues FDSCF Ref[13] Error
E0 0.462459047 0.462579418 0.000120371
E1 4.442553417 4.179929550 0.262623867
E2 10.59860958 10.35117007 0.24743951
E3 19.21512218 18.98801387 0.22710831
E4 30.28031329 30.091750 0.18856329
E5 43.78267728 43.662690 0.11998728
E6 59.70867902 59.70093840 0.00774062
E7 78.04253889 78.20653790 0.16399901

CPU time(s) 113 - -
Table 1. Comparison of eigenvalues of example 4.1 obtained by FDSCF for
Q = −1.

Eigenvalues FDSCF Ref[13] Error
E0 -3.401183255 -3.400181294 0.001001961
E1 2.797846407 1.049048570 1.748797837
E2 8.746335726 7.297398975 1.448936751
E3 17.29591993 15.95855638 1.33736355
E4 28.33125868 27.07312364 1.25813504
E5 41.81772984 40.64983880 1.16789104
E6 57.73425675 56.69153305 1.04272370
E7 76.06201420 75.19935505 0.86265915

CPU time(s) 104 - -
Table 2. Comparison of eigenvalues of example 4.1 obtained by FDSCF for
Q = −5.

Example 4.2. Consider Eq. 1.1 on (−1, 1) with c = −1, U(x) = 0 and V (x) = 0.452 cos(π(1−
x)). In [1], the eigenvalues are obtained by using the discretized Euler-Lagrange variational
method. Let N = 100 and i = 10. Table 3 represents the smallest eigenvalue obtained from
reference [1] and FDSCF method for Q(x) = 0.5...2. In figure 5, we show the convergence
of this method through variation of the minimum eigenvalue as a function of the number of
nodes and the number of iterations for Q = 1.
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Figure 1. Left figure show the variation of the minimum eigenvalue as a
function of the number of nods and right figure show the variation of the
minimum eigenvalue as a function of the number of iterations for Q =-1 (
example 4.1).

Figure 2. Left figure show the variation of the minimum eigenvalue as a
function of the number of nods and right figure show the variation of the
minimum eigenvalue as a function of the number of iterations for Q =-5 (
example 4.1).

5. Conclusion
In this paper, the FDSCF method is applied to a class of non-linear eigenvalue differential

equation with homogeneous boundary conditions. The eigenvalues obtained through this
method are compared with exact values and some other references. To demonstrate the
efficiency and effectiveness of the proposed method, two examples are examined. Based on
numerical experiments, we conclude that, the method work better, for smaller values of the
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Figure 3. Variation of the minimum eigenvalue as a function of Q( example 4.1).

Figure 4. Variation of the error as a function of number of eigenvalues for Q
=-1, -5(example 4.1).

non-linear coefficient |Q|. Also we see that the results for smallest eigenvalue have enough
accuracy. But accuracy is not enough for large eigenvalues.
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Q FDSCF Ref[1] Error CPU time(s)
0.5 2.616948710 2.616951848 0.3138e-05 108
1 2.990592936 2.99059549 0.2554e-05 106

1.5 3.359893114 3.35989571 0.2596e-05 112
2 3.725158240 3.725158948 0.708e-06 109

Table 3. Comparison of smallest eigenvalue of example 4.2 obtained by FD-
SCF method.

Figure 5. Left figure show the variation of the minimum eigenvalue as a
function of the number of nods and right figure show the variation of the
minimum eigenvalue as a function of the number of iterations for Q = 1 (
example 4.2).
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