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MUTUAL ENTROPY MAP FOR CONTINUOUS MAPS ON COMPACT
METRIC SPACES

MEHDI RAHIMI* AND AMIR ASSARI

ABSTRACT. In this paper we introduce the concept of mutual entropy map for continuous
maps on metric spaces. It is a non-negative extended real number which depends on two
measures which are preserved by a system. Then we will extract the Kolmogorov entropy
of ergodic systems from the mutual entropy as a special case when the two measures are equal.
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1. Introduction

Entropy, as a measure of uncertainty associated with a random variable, was introduced by
Shannon [14] in information theory. Then it was introduced in ergodic theory by Kolmogorov
[7] and Sinai [17], which measures the rate of increase in dynamical complexity as a system
evolves with time. Adler, Konheim, and Mc Andrew [1] introduced the topological entropy as
an invariant of topological conjugacy and also as an analogue of measure theoretic entropy.
Later, Dinaburg and Bowen [3] gave a new, but equivalent, definition of topological entropy
that led to the variational principle which connected the topological entropy and measure
theoretic entropy.

The concept of entropy is studied from different viewpoints [2, 9]. For example, Shannon
[11], McMillan [8] and Breiman [!] gave local approaches to entropy based on the theorem
of Shannon-McMillan-Breiman. Another interesting topological version of the theorem of
Shannon-McMillan-Breiman was given by Brin and Katok [5]. As another example, the
entropy of a continuous map on a compact metric space is considered as a linear operator in
[10] and a linear functional in [11], rather than a non-negative number.

There are also many generalized forms of entropy and information [6, 12, 13, 15, 16, 18]
which are applied in other areas of science.

In information theory, the Shannon information, H(X), is defined for a random variable
X. This concept is generalized to the "mutual information”, I(X,Y"), which depends on two
random variables X and Y. The mutual information and Shannon information coincide when
X =Y, ie, I(X,X)=H(X).

In this paper, motivating from the mutual information, we define the concept of mutual
entropy, I'r(u,v), for continuous systems on compact metric spaces. The definition of mu-
tual entropy depends on two invariant measures, regardless to the definition of Kolmogorov
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entropy. We will show that the two concepts coincide when p = v. This also presents a local
approach to the Kolmogorov entropy of dynamical systems.

In section 2, we first recall some preliminary facts on entropy. In section 3, we will introduce
the concept of mutual entropy map and will prove some of its properties. Finally, in section
4, we will extract the Kolmogorov entropy from the mutual entropy map as a special case.

The family of all Borel probability measures on X is denoted by M (X), and the family of
all Borel probability measures on X that is preserved by 7" is denoted by M (X,T"). We also
write F(X,T') for the collection of ergodic measures of T'.

2. PRELIMINARY FACTS

Kolmogorov and Sinai introduced the measure theoretic entropy h, (1) for measure-preserving
dynamical systems. Let T': (X,B, u) — (X, B, 1) be a measure-preserving map on the prob-
ability space (X,B, 1). The measure theoretic entropy is defined as follows [19]:

n—1
hu(T) = sup lim lH( \/ 7).
=0

§ n—,oo N

Here the supremum is taken over all partitions and \/?:_01 T—€ is the partition generated by
events of n successive observations.

A topological analogue of the measure theoretic entropy was introduced by Adler, Konheim
and McAndrew [1] in 1965. The topological entropy of a continuous map 7' : X — X on the
compact space X is defined as follows:

n—1
1 .
hiop(T) = sup lim —log N( \/ T 'a)
i=0

o Moo M

where the supremum is taken over all open covers of X, and N(«) denotes the number of sets
in a finite subcover of a with smallest cardinality.

In 1948 Shannon, in a famous work [1] which originated information theory, introduced a
notion of entropy applicable to shifts, which is essentially the same as Kolmogorov’s. It led to
an approach to the concept of entropy, based on the theorem of Shannon-McMillan-Breiman.
An interesting topological version of the theorem of Shannon-McMillan-Briman was given by
Brin and Katok [5]. Let (X, d) be a compact metric space, B the Borel o—algebra of X and
i a probability measure on 8. Let T': (X,d) — (X,d) be a continuous map preserving .
For n € N the metric d,, is defined on X as follows:

dn(l‘ay) ‘= max d(Tj(.’B),T](y))

0<j<n
For € > 0 and = € X, the e—ball of d,, centered at x is denoted by By (z,¢). In other words
Bu(z,€) ={y € X : d(T?(y),T’(x)) <¢, 0<j <n}.

Definition 2.1. Suppose that 7" : (X, d) — (X, d) is a continuous map on the compact metric
space (X, d). Define

. 1
h;(T, x,€) := — limsup - log u(By(z,€)),

n—oo

_ L1
h, (T, z,€) := —liminf —log u(By(z,¢)).

n—oo N
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Brin and Katok [5] proved the following theorem and gave a local approach to measure
theoretic entropy.

Theorem 2.2. Suppose that T : (X,d) — (X, d) is a continuous map on the compact metric
space (X,d) and p € M(X,T), then
(i) lime0 hf (T, €) = lime o by, (T, x,¢€) := hy(T,x)  for almost every x in X ;;
(it) hy(T,x) is T—invariant;
(i) [y hu(T,z)dp(x) = hy(T), where hy,(T) is the measure theoretic (Kolmogorov) en-
tropy.

3. Mutual entropy map

In this section, we introduce the concept of mutual entropy map for continuous maps on
metric spaces. Suppose that T : (X,d) — (X,d) is a continuous map on the metric space
(X,d). Let, forn € N, e > 0 and z € X, B,(z,¢€) be as in section 2.

Definition 3.1. Suppose that T : (X,d) — (X,d) is continuous. For n € N, ¢ > 0 and
x,y € X define

1 .
T(T, 2, ys€) i= limsup ~card({0 < j < p—1: TI(y) € Bu(a,€)}):
p—oo P

(T, x,y, €) is called the (n,e)—tendency of y with respect to x.

Definition 3.2. Suppose that T : (X,d) — (X,d) is continuous. For n € N, ¢ > 0 and
x,y € X define

1 .
) —zlogmp (T, x,y;€) if mp (T, z,y5€) #0
el @ y56) = { ! 0 if mn (T, 2, y5€) = 0
Definition 3.3. Suppose that T': (X,d) — (X,d) is continuous, € > 0, and z,y € X. The

e—relative entropy of y with respect to = is defined as follows:

J(T,x,y;¢€) = limsup o, (T, z, y; €).
n—oo

It is easy to see that, if €1 < es then J(T,z,y;¢1) > J(T,x,y;€2); therefore, the limit
lime_,0 J (T, x,y; €) exists as an extended real number.

Definition 3.4. Suppose that T : (X,d) — (X, d) is continuous, and x,y € X. The relative
entropy of y with respect to z (under the system T') is defined as follows:

jT(xa y) = lg% j(Ta x,Y; 6)

The map X x X — [0,00] given by (z,y) — Jr(z,y) is called the relative entropy map of
T.

Remark: Since the map (x,y) — d,,(T?(y), x) is continuous for all j and n, then one can
easily see that the map (z,y) — Jr(z,y) is Borel measurable and hence

Jr(z,y)d(p x v)(x,y)
XxX

is well-defined.
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Definition 3.5. Suppose that T : X — X is continuous. The map
p: M(X,T)x M(X,T) — [0, 0]
defined by

Lr(p,v) = Jrdp X v
XxX

is called the mutual entropy map of T

It is obvious from the definition that:

(i) I'p is affine with respect to each variable, i.e.,

FT(Z Nifti, V) = Z Al (i, v)
=1 =1

and
n

Lo Y Xivi) = Y Alr(p, i)
i=1

i=1
where \; > 0 and Y ;" | A\, =1;
(ii) 'z is symmetric, i.e., I'r(u,v) = I'r(v, p) for all p,v € M(X,T).
We recall that, two continuous maps 77 : X1 — X9 and Tb : X9 — Xs are said to be
topologically conjugate, if there is a homeomorphism ¢ : X7 — X5 such that ¢T7 = Ts¢. For
example, one may easily see that, the maps 73,75 : [0, 1] — [0, 1] defined by

2z if v <1
Tl(x)_{ 22 ifx>1

and Ty(z) = 4z(1 — x) are topologically conjugate via ¢(z) = sin®(%t).

Theorem 3.6. Suppose that T1 : X1 — X1 and Ty : Xo — Xo are topological conjugate
continuous maps via the homeomorphism ¢ : X1 — Xo. Then for p,v € M(X1,T1) we have

FTl ('ua V) = FTQ (Mb—l’ V¢_1)'

Proof. Fix z,y € X;. Let € > 0 and n € N. Since ¢ is a homeomorphism, then there exists
0 < § < € such that
¢(Bn(z,6)) C Bn(6(2), €).
Let pe N. For 0 < j <p-—1,if T]( ) € By(x,0) then ¢T! (y) € ¢(By(z,8)) C Bu(p(z),e).
Since ¢T1 = Tr¢ then Tjgb( ) € Bp(é(z),€) and this is equivalent to

{0<j<p—1: T/(y) € Bu(w,8)} C{0<j <p—1: TIb(y) € Buld(x), )}
hence
Tn(T1, 2, Y3 0) < mn (1o, 9(2), 9(y); €).
By taking the logarithm, dividing by n and letting n — +o00 we will have

Jr (z,y;0) = limsup o, (11, x,y;0)

n—0o0

> limsup Son(TQv ¢($)’ ¢(y)v 6)

n—oo

= J(T2,¢(x), 6(y); ).
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By taking the limit in above inequality as ¢ — 0, we get

jT1 (x7 y) > jTQ (¢($), (b(y))

Since ¢ is a homeomorphism then

Iy (,y) = Ty (6(2), 6(y))-
Finally, for p,v € M(X1,T1) we have

Pr(uv) = /X  Tnedx )

- [ ( [ an (e )du) ) vy
-/ ( 3 1,(0(a). 60 du(a) ) i)

-/ ( 3 i (o0 (@) ) vy

- [ (f . (5o @) oo™ (1)
_ /X et < voh (@)

= FT2(:UJ¢_17V¢_1)' 0
Recall that, two metrics d; and dz on X are uniformly equivalent if id : (X, d;) — (X, dz2) and
id : (X,d2) — (X,d;y) are both uniformly continuous. Note that, seemingly, the definition of
By (z,€), m (T, z,y; €) and therefore Jr(x,y) depends on the metric. The following theorem
states that, this is not the case.

Theorem 3.7. Let di and ds be uniformly equivalent metrics on X. Let also j}l) and jT(Q)
be the corresponding relative entropy maps, then \7}1) = \7}2).
Proof. Suppose that
B (x,€):={y € X : di(T'(y), T'(z)) < e,1 <i < n}
and

77,([“) (x,y;€) := limsup 1(:ard({O <j<p-—-1: Tj(y) € Bflk) (x,6)}) (k=1,2).
p—oo P

For given € > 0, by uniform continuity of id : (X, d;) — (X, d2), choose 0 < § < € such that
Ve,y € X o di(z,y) <0 = do(x,y) <e.
This easily indicates that Bfll)(x, J) C B7(12)(x, €) for all n € N| so
7Oz, y;6) < 72 (x, y; €)

and consequently
o (2, y:0) = &P (2,5 ).

This easily results in j:ﬁl)(x,y) > \7%2) (z,y). Applying the uniform continuity of id :
(X,ds) — (X, dy) and repeating the previous procedure, we will have the converse inequality.
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0

As an example of equivalent metrics, let d; be the standard metric di(z,y) = |z — y| on
[0,1]. Let also, d2 be the metric on [0, 1] defined by da(z,y) = |e* — eY|. Then d; and ds
are uniformly equivalent metrics on [0, 1]. So, for any continuous map 7" : [0, 1] — [0, 1], the
relative entropy maps of T', corresponding to d; and ds, coincide.

4. Mutual entropy and Kolmogorov entropy

In this section, we will extract the Kolmogorov entropy from the mutual entropy as a
special case. It also gives a local approach to the Kolmogorov entropy. In the rest of this
section T': X — X is a continuous map on the compact metric space X.

Now we are in a position to extract the Kolmogorov entropy from the mutual entropy
for ergodic systems. The following theorem states that the mutual entropy coincides to the
Kolmogorov entropy when p = v.

Theorem 4.1. Suppose that T : (X,d) — (X, d) is a continuous map on the compact metric
space (X,d). Then

Ly (p, ) = hy(T)
for all ergodic measures .

Proof. Let u be an ergodic measure. Let z,y € X be given. Let also {€,},>1 be a sequence
of positive numbers such that €, — 0. For m,n € N we have

1 .
Tm(T, 2, y;€n) = limsup —card({0<j<p—1: T'(y) € Bp(z,€n)})
p—oo P
152 .
= limsup — Z XBm(z,en)(Tj (y))
p—00 Pj:()

Since p is ergodic then

. 15 -
limsup =Y~ xg, (@wen) (17 (y) = /X XBum () W)V (Y) = w(Bm (2, €n))

p—oo P =0

for almost all y € X, i.e., there is Borel measurable subset Ay, ,, ; of X such that v(Ay, nz) =1
and

(4.1) Tm (T, 2,y €n) = (B (2, €n))
for all y € Ay, 5. Let Ay = ﬂ;’;’nzl Apyng; then p(Az) = 1, and (4.1) holds for all y € A,.

Taking logarithm, dividing by m and letting m — +o0o and then n — 400, in above equality,
we conclude that:

Ir(z,y) = hu(T, x)
for all y € A,. Integrating both sides of the previous equality with respect to y, we have:

(4.2) /X Tr(,y)dply) = /A Tr(,y)du(y) = /X h(T, 2)duly) = hy (T, ).

Finally, the result follows by integrating the previous equality with respect to x. [J
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5. Concluding remarks

In this paper, we introduced the concept of mutual entropy I'r(u,v) for a continuous
map on a compact metric space. This is a non-negative quantity which is invariant under
topological conjugacy. When p = v we get the Kolmogorov entropy as a special case. The
definition of the mutual entropy depends on the function Jr : X x X — [0, 00| where the
integral of Jpr with respect to u X u equals the Kolmogorov entropy. It is also proved that,
the introduced quantity is independent of the choice of metric as long as the topology does
not change.
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