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ABSTRACT. In this paper, we introduce a semi-symmetric non-metric connection on 7-
Kenmotsu manifolds that changes an n-Kenmotsu manifold into an Einstein manifold. Next,
we consider an especial version of this connection and show that every Kenmotsu manifold
is &-projectively flat with respect to this connection. Also, we prove that if the Kenmotsu
manifold M is a &-concircular flat with respect to the new connection, then M is necessar-
ily of zero scalar curvature. Then, we review the sense of £-conformally flat on Kenmotsu
manifolds and show that a £-conformally flat Kenmotsu manifold with respect to the new
connection is an 7-Einstein with respect to the Levi-Civita connection. Finally, we prove
that there is no £-conharmonically flat Kenmotsu manifold with respect to this connection.
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1. Introduction and Background

The sense of Kenmotsu manifolds was introduced for the first time in [1] by K. Kenmotsu.
He proved that a locally Kenmotsu manifold is a warped product I x ¢ N of an interval I and
a Kaehler manifold N with warping function f(t) = se!, where s is a non-zero constant. The
semi-symmetric connections was first defined by Friedman and Schouten ([5], [1]). The linear
connection V is named a semi-symmetric connection if the following relation holds:

(1.1) T(X,Y)=u(Y)X — u(X)Y,

where T is the torsion tensor of V and u is a 1-form. The semi-symmetric connections
play a prominent role in Riemannian geometry. In [7], Yano showed that the existence of a
semi-symmetric connection with zero curvature tensor is equivalent to being a conformally
flat manifold. The Riemannian manifold (M",g) is said to be conformally flat if at any
point p € M there is a neighbourhood U around p and a smooth function f on U such
that (U, e?/g) is flat. It is well known that Riemannian manifolds with constant sectional
curvature are conformally flat. An important tool to being conformally flat is the Weyl
conformal curvature tensor that is given by [3]:
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C'(X,Y)Z = R(X,Y)Z — %2{5(1/, 2)X - S(X, 2)Y + ¢(Y. 2)QX
T
(n—1)(n—2)
where R, S, and @) are respectively the curvature tensor, the Ricci tensor, and the Ricci
operator and r denotes to the scalar curvature of n-dimensional manifold M. Hence, a
Riemannian manifold is conformally flat if and only if its Weyl conformal curvature tensor
vanishes [8]. Furthermore, the Riemannian manifold (M™,g) is called locally projectively
flat manifold if there is a coordinate system (x,U) at every point p such that x maps any
geodesic of M to a straight line in R™. By the Beltrami’s theorem being a locally projectively
flat Riemannian manifold is equivalent to being of constant sectional curvature. In [6], Soos

defined the projective curvature tensor as follow:

(1.2) —9(X, 2)QY} + {9(Y,2)X —g(X, 2)Y},

(1.3) P(X,Y)Z =R(X,Y)Z — ﬁ{S(Y, 2)X — S(X,Z)Y}.

He proved that a Riemannian manifold is locally projectively flat manifold if and only if its
projective curvature tensor is identically vanishes. A concircular transformation on Riemann-
ian manifold (M™, g) is a transformation that maps every geodesic circle of M to a geodesic
circle. The concircular curvature tensor was first defined by Yano [9] as follows:

(1.4) Z(X,Y)W = R(X,Y)W — ﬁ{g(i/, W)X — g(X, W)Y},

n(n —
He showed that a Riemannian manifold which admits a concircular transformation is nec-
essarily of constant scalar curvature [9]. Indeed, the conharmonic curvature tensor for the

Riemannian manifold (M", g) defines as follows [3]:
1
C(X,Y)Z = R(XY)Z - —{S(Y.2)X = S(X. 2)Y
(1.5) +9(Y, 2)QX — g(X, 2)QY }.

A Riemannian manifold with zero conharmonic curvature tensor is called a conharmonically
flat manifold. Semi-symmetric and quarter-symmetric connections on Kenmotsu manifolds
have been studied by many authors. Recently, Haseeb and Prasad defined a semi-symmetric
connection on Kenmotsu manifolds and proved that an n-dimensional conharmonically flat
n-Einstein Kenmotsu manifold with respect to the semi-symmetric connection is of quasi-
constant curvature and has zero scalar curvature [2]. The almost contact metric manifold
(M, p,&,n,g) is called n-Einstein manifold if its Ricci tensor satisfies:

(1.6) S(X,Y) =ag(X,Y) +bn(X)nY),

where a and b are smooth functions on M. Similar to (1.1), the linear connection V on
smooth manifold M is named quarter-symmetric if

(1.7) T(X.Y) =uY)o(X) — u(X)(Y),

where u is a 1-form, ¢ is a (1,1) tensor field, and T is the torsion tensor of V. Thereafter,
Zhao and et al. defined a quarter-symmetric connection on Kenmotsu manifolds and proved
that every &-conformally flat Kenmotsu manifold with respect to the quarter-symmetric con-
nection is an n-Einstein. They also showed that an n-dimensional £-concirculary Kenmotsu
manifold with respect to the quarter-symmetric is of constant scalar curvature r = —n(n —1)
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[10] (for more see the references inside [2] and [10]).

Motivation by these works, we define a new semi-symmetric connection on Kenmotsu man-
ifolds and get some interesting results. The paper is organised as follows: In section 2,
we give some definitions and facts on Kenmotsu manifolds. In section 3, we define a new
semi-symmetric connection on Kenmotsu manifolds that changes an n-Einstein Kenmotsu
manifold to an Einstein manifold. In section 4, we consider an especial version of this con-
nection and prove that if the Kenmotsu manifold M is a £-concircular flat with respect to the
new connection, then M is necessarily of zero scalar curvature. Then, we review the sense
of &-conformally flat on Kenmotsu manifolds and show that a £-conformally flat Kenmotsu
manifold with respect to the new connection is an 7n-Einstein with respect to the Levi-Civita
connection. Finally, we prove that there is no £-conharmonically flat Kenmotsu manifold
with respect to this connection.

2. Preliminaries

An almost contact metric manifold is a (2m + 1)-dimensional smooth manifold M with a
(1,1) tensor field ¢, a vector field £, a 1-form 7, and a Riemannian metric g satisfying:

(2.1) o’ =-T+n®¢, n() =1, o(&) =0, nop = 0,
(2:2) 9(X,Y) = g(e(X),o(Y)) + n(X)n(Y),
(2.3) 9(p(X),Y) = —g(X, p(Y)), 9(§, X) = n(X),

for all X,Y € x(M), where x(M) is the set of all smooth vector fields on M. The almost
contact metric manifold (M, ¢, &,n, g) is called a Kenmotsu manifold if it satisfies:

(2.4) (Vxp)Y = —n(Y)p(X) + g(0(X),Y)E,

where V is the Levi-Civita connection of g. In n-dimensional Kenmotsu manifolds M the
following relations hold [4]:

(2.5) Vx€ =X —n(X)E.

(2.6) (Vxm)(Y) = g(X,Y) = n(X)n(Y).
(2.7) R(X,Y)¢ = n(X)Y —n(Y)X.

(2.8) R(&X)Y =n(Y)X - g(X,Y)E.

(2.9) n(R(X,Y)Z) = g(X, Z)n(Y) — g(Y, Z)n(X).
(2.10) S(X,€) = —(n— D)n(X).

(2.11) Q¢) =—(n—1)¢.

Also, in 7-Einstein Kenmotsu manifolds, we have [1]:

(2.12) a+b=—(n-1), X (b) + 2bn(X) = 0.

The linear connection V on Riemannian manifold (M, g) is called a metric connection if
Vg = 0, otherwise it is called non-metric.



10 V. PIRHADI

3. A new connection on 7-Einstein Kenmotsu manifolds

Let (M, ,£,1n,9) be an n-Einstein Kenmotsu manifold whose Ricci tensor is defined by
(1.6). We define the semi-symmetric non-metric connection V as follows:

(3.1) VY = Vx¥ —an(X)Y — n(X)n(V)e

where V is the Levi-Civita connection of g. Consider the torsion tensor of V as:
(3.2) T(X,Y)=VxY -VyX - [X,Y],

we get

(3.3) T(X,Y) =a(n(Y)X —n(X)Y).

(3.4) (Vxo)(Y, 2) = 20(X){ag(¥, 2) + “n(Z)n(¥ )},

that verify V is a semi-symmetric non-metric connection. Now, we have the following theorem.

Theorem 3.1. Let (M, p,&,m,9) be an n-Einstein Kenmotsu manifold whose Ricci tensor is
given by

(3.5) S(X,Y) = ag(X,Y) + bn(X)n(Y),

then M is an Einstein manifold with respect to V.

Proof. Let R be the curvature tensor with respect to V which is given by:
(3.6) R(X,Y)Z =VxVyZ —-VyVxZ—VxyZ.

By a straight calculation, we see

VXVyZ = VX Uy Z — an(X)Vy 2 n(X)n(Vy 2)6 ~ X (ap(¥)Z

—aX(V)Z ~ an(Y)VxZ + an(¥In(X)Z + DV n(X)n(2)e
X)X (Y )(2)E ~ (Y In(Z)V x€
(3.7 -+ amVm(Zn(X)E

Interchanging X and Y, we obtain

R(X,Y)Z = R(X,Y)Z +{Y (a)n(X) — X(a)n(Y)} Z — {X( b)??(Y)

n

~Y(m)(Z)E ~ (V)X n(X)Y} n(2)
(39 ~ g2, XY ) - 92,V )(X)E)

Taking a contraction of the above equation yields

S, 2) =5, 2) + {Y(a)n(2) = Z(a)n(Y)} — {ﬁ(g)n(Y)

(39 Y (2) (Y )n(Z) + g(Y, 2).
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Let us consider the smooth vector fields Y and Z as follows:

(3.10) Y =n(Y)§+Y, Z=n(2)¢+Z,

where Y, Z € ker(n). By using (2.12) and the above relations, we find
b b

(3.11) Y(a)n(Z) = Z(a)n(Y) = £()n(Y) =Y () = 0.

Hence, S(Y, Z) can be written as:

_ b
(3.12) S(Y,2) = S(Y,2) = ba(¥Y)(Z) + g(Y, Z).
From (1.6), we get
— b
(3.13) S(Y,2) = (a+ )g(V, 2),
and this completes the proof. O

4. A &-projectively flat connection

In this section, we study the notions of &-projectively flat, £-conharmonically flat, &-

concircular flat, and §-conformally flat on Kenmotsu manifods. Putting a =1 and b = —n in
(3.1), we get an especial version of V (which we denote it again by V) that is
(4.1) VxY = VxY = n(X)Y +n(X)n(Y)E.

By the above assumptions, we have

R(X,Y)Z = R(X,Y)Z +{9(Z, X)n(Y) = 9(Z,Y)n(X)}¢

(4.2) + {n(Y)X —n(X)Y}n(2),

and the Ricci tensor becomes

(4.3) S(X,Y)=8(X,Y) - g(X,Y) +nn(X)n(Y).

Definition 4.1. [10] Let (M",¢,£,n,9) be a Kenmotsu manifold, then M is called a -
projectively flat manifold with respect to V if

(4.4) P(X,Y)=0,

for all X,Y € x(M), where P(X,Y)Z is defined by
_ _ 1 _
(4.5) P(X.Y)Z =R(X.Y)Z - ——(S(Y,2)X - S(X,2)Y }.

Theorem 4.2. Let (M™,p,£,n,9) be a Kenmotsu manifold, then M is a &-projectively flat
manifold with respect to the connection V.

Proof. Substituting Z = £ in (4.8), we see

(4.6) (X, V)€ = R(X, V)€ + {n(Y)X —n(X)Y},
using R(X,Y )& =n(X)Y —n(Y)X, we conclude that

(4.7) R(X,Y)E = 0.

Also, From (4.3) and S(X,¢§) = —(n — 1)n(X) we obtain

(45) (X8 =0,

which proves the theorem. ]
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Definition 4.3. [10] The Kenmotsu manifold (M", ¢, £, n,g) is called a &-concircular flat
manifold with respect to the semi-symmetric connection V, if
(4.9) Z(X,Y)E =0,

for all X,Y € x(M), where Z(X,Y)W defines by

(4.10) Z(X, Y)W =R(X, Y)W — {g(Y, W)X — g(X,W)Y}.

n(n—1)

Theorem 4.4. If (M”,go,f,n,gL) 1s a &-concircular flat Kenmotsu manifold with respect to
the semi-symmetric connection V, then M is of zero scalar curvature.

Proof. Taking a contraction of (4.3), yields 7 = 7. Let {e1, €2, ..., €2, &} be an orthonormal
basis for (2m + 1)-dimensional M (n = 2m + 1). Since R(X,Y){ = 0, we get

- r
(4.11) Z(X,Y)E = —m{n(Y)X —n(X)Y}.
Substituting X = £ and Y = e; to see
(4.12) n(Y)X —n(X)Y #0,

at any point p € M. So, if Z(X,Y)¢ =0, then M is necessarily of zero scalar curvature. [J

&-conformally flat manifolds was first introduced by Zhen and et al. [11]. The Kenmotsu
manifold (M",p,§,n,g) is said a {-conformally flat Kenmotsu manifolds if C'(X,Y)§ = 0,
where C'(X,Y)Z is given by

C(X,Y)Z =R(X,Y)Z — ﬁ{?(x Z)X = S(X,2)Y +g(Y,2)QX

(4.13) —9(X,2)QY} + )]

{9(Y,2)X —g(X, Z)Y}.

This leads us to the following theorem.

Theorem 4.5. Let (M",(p,ﬁ,n,g)l)@ a &-conformally flat Kenmotsu manifold with respect

to the semi-symmetric connection V, then M is an n-Finstein manifold with respect to the
Levi-Clivita connection.

Proof. The equation (4.3) implies that
(4.14) Q(X) = Q(X) — X + nn(X)¢.
Using (4.7), (4.8), and the above relation, we obtain

C(X,Y)E = %{U(Y)Q(X) — (V)X = n(X)Q(Y) +n(X)Y}

+ m{n(Y)X —n(X)Y}

— L0 QU+ x4 x|

n—2 n—1

(1.15) 00 o) -y - v




A ¢-PROJECTIVELY FLAT CONNECTION ON KENMOTSU MANIFOLDS 13

r
e,
n—1"["

where {e1, ea, ..., eam, £} is an orthonormal basis on M. Thus, if C7(e;, )¢ = 0, then we have

substituting Y = £ and X = ¢;, we get

(4.16) Tlein )6 = —

{—Q(ei) +e; +

r

(4.17) Qlei) = (-—7 + Des.
From (2.10), we find
(4.18) S(X,Y) = (o + Dg(X,Y) = (= + mn(X)n(¥),

O

Similarly to {-conformally flat manifolds, a Kenmotsu manifold is called a {-conharmonically
flat manifold if C'(X,Y )¢ = 0 where C'(X,Y)Z defines by

_ _ 1 _
C(X,Y)Z=R(X,Y)Z — m{S(Y, )X -S(X,2)Y

(4.19) +9(Y,2)QX — g(X, Z)QY'}.

Thus, we can state the following theorem.

Theorem 4.6. There is no §-conharminically flat Kenmotsu manifold with respect to the
semi-symmetric non-metric connection V.

Proof. Using (4.7) and (4.8) and putting Z = £ in the above equation, we conclude that

(120) CX,Y)E =~ p(V)QX) — n(X)Q(V)).

From (4.14) and by using the orthonormal basis {e1, ea, ..., €2, {}, We see

(1.21) Tles 06 = ———{Qle) — i}

Therefore, the equation C/(e;, £)¢ = 0 implies that Q(e;) = e; and this yields

(4.22) S(X,Y) = g(X,Y) —nn(X)n(Y),

and this is impossible because of (2.12). O

Example 4.7. Let M" = {(x1, 22, ...,26,2) € R7; 2 > 0}. Putting n = dz and let {ey,...,e7}
be an orthonormal basis which is given by

0 _, 0 .
(4.23) er =& := 5 e, =e Z@xi’ i=1,..,6.
Next, suppose that the (1,1) tensor ¢ is given by:
(4.24) p(£) =0, p(e&) = eits, p(ej) = —ej-s3,

where i = 1,2,3 and j = 4,5,6. Then (M7, ¢,£,1,9) is a Kenmotsu manifold which the
Riemannian metric g is defined by [2]:

6
(4.25) g =e* Z dz' @ da' 4 dz ® dz.
i=1
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Also, the curvature tensor and the Ricci tensor of M7 can be written as follows [2]:
(4.26) R(X,Y)Z = —{g(Y,2)X —g(X, Z)Y},
(4.27) S(X,Y)=—6g9(X,Y).

From the above equations, we get

R(X, Y)Z = —{g(Y, Z)X - g(X, Z)Y} + {g(Z7X)77(Y)
(4.28) - 9(Z,Y)n(X) Y+ {n(Y)X —n(X)Yn(2).

(4.29) S(X,Y)=—-79(X,Y) + Tn(X)n(Y).
5. Conclusion

In this paper, we defined a new semi-symmetric non-metric connection on 7-Kenmotsu
manifolds that changes an n-Kenmotsu manifold into an Einstein manifold. Next, we proved
that for a = 1 and b = —n every Kenmotsu manifold is &-projectively flat with respect to this
connection. Also, we showed that if the Kenmotsu manifold M is a &-concircular flat with
respect to the new connection, then M is necessarily of zero scalar curvature. Thereafter, we
demonstrated a &-conformally flat Kenmotsu manifold with respect to the new connection is
an 7-Einstein with respect to the Levi-Civita connection. Finally, we proved that there is no
&-conharmonically flat Kenmotsu manifold with respect to this connection.
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