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POLYNOMIAL DIFFERENTIAL QUADRATURE METHOD FOR
NUMERICAL SOLUTION OF THE GENERALIZED BLACK-SCHOLES
EQUATION
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ABSTRACT. In this paper, the polynomial differential quadrature method (PDQM) is im-
plemented to find the numerical solution of the generalized Black-Scholes partial differential
equation. The PDQM reduces the problem into a system of first order non-linear differential
equations and then, the obtained system is solved by optimal four-stage, order three strong
stability-preserving time-stepping Runge-Kutta (SSP-RK43) scheme. Numerical examples
are given to illustrate the efficiency of the proposed method.
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1. Introduction

An option is a financial contract that gives its owner the right to buy or sell a specified
amount of a particular asset at a fixed price, called the exercise price, on or before a specified
date, called the maturity date. Options that can be exercised at any time up to the maturity
are called American, while options that can only be exercised on the maturity date are Euro-
pean. Options which provide the right to buy the underlying asset are known as calls, whereas
options conferring the right to sell the underlying asset are referred to as puts. It was shown
by Fischer Black and Myron Scholes in 1973 that these option prices satisfy a second-order
partial differential equation with respect to the time horizon ¢ and the underlying asset price
[1]. This equation is now known as the Black-Scholes equation, and can be solved exactly
when the coefficients are constant or space-independent. However, in many practical situa-
tions, numerical solutions are normally sought. Therefore, efficient and accurate numerical
algorithms are essential for solving this problem accurately.

In the past several decades, many researchers have spent a great deal of effort to compute
the numerical and analytical solution of the Black-Scholes equation using various numerical
methods. The first numerical approach to the Black-Scholes equation was the lattice technique
proposed in [2] and improved in [3]. That approach is equivalent to an explicit time-stepping
scheme. Other numerical schemes based on classical finite difference methods applied to
constant coefficient heat equation have also been developed (see, [4-13]). The reason for this
is that when the coeflicients of the Black-Scholes equation are constant or space independent,
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the equation can be transformed in to a diffusion equation. In this case the problem is said
to be path-independent. However, when a problem is space dependent, one cannot transform
this to the standard heat equation and thus the Black-Scholes equation in the original form
needs to be solved.

Since the Black-Scholes equation becomes degenerate at the underlying asset price z =
0, classical finite difference methods may fail to give accurate approximations when x is
small. To overcome this difficulty, some authors suggest to solve the differential equation in
a truncated space interval excluding the point singularity @ = 0 (see [13]). Others tend to
use a transformation technique which transforms the space interval (0, X| into a semi-infinite
interval (see [9]). Obviously, neither of these approaches resolves the singularity. Furthermore,
if the final condition of the problem is chosen to be a step or delta function, an interior layer
appears in the solution due to the singularity in the final condition. In this case, the gradient
near the layer is very large so that classical methods may fail to yield accurate approximations.

To the best of the author’s knowledge, the differential quadrature method (DQM), where
approximations of the spatial derivatives have been based on a polynomial of high degree,
has not been implemented for the Black-Scholes equation so far. The DQM is an efficient
discretization technique in solving initial and/or boundary value problems accurately that
firstly, was introduced by Bellman et al. [I7] in 1972. After that, many authors employed
this method for the solutions of many problems in applied sciences (for example see the
references [18-34] and the papers therein) .

In this paper, we propose a numerical scheme based on polynomial differential quadrature
method (PDQM) to find the numerical solution of the generalized Black-Scholes equation.
The PDQM reduces the problem into a system of first order non-linear ordinary differential
equations. Then, the obtained system is solved by SSP-RK43 method [12]. The accuracy and
efficiency of the proposed method are demonstrated by some test examples. The numerical
results are discussed in L., errors and figures form. The obtained numerical solutions are
very similar to the exact solutions.

2. The continuous problem

Let us consider the following generalized Black-Scholes equation
2.1) ¢ + %02(5,7)52035 F(r(S,7) — d(S, 7)) SCs — r(S,7)C = 0, (S,7) € RT x (0,T),
equipped with the terminal condition
(2.2) C(S,T) = max(S — E,0), S € RT,

where C(S, 7) is the value of the European call option at the asset price S and at time 7, E
is the exercise price, T is the maturity date, (S,7) > 0 is the risk-free interest rate, d(S,7) is
the dividend, and o(S,7) > 0 represents volatility function of underlying asset.

Here, we assume that r(S,7), d(S,7), and o(S, ) are sufficiently smooth and bounded on
the domain. When 7, d and o are constant functions, it becomes the classical Black-Scholes
equation.

The existence and uniqueness of a classical solution of (2.1)-(2.2) is well known (see, [14, 15,

]). In fact, it can be transformed to a Cauchy problem for a uniformly parabolic operator.

Now, we see that the above model is described in an infinite domain R™ x (0,7'), which
makes difficulties in constructing numerical solutions. This motivates the consideration of the
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following model defined on a truncated domain ©Q = (0, Spax) X (0,7), where Sy, is suitably
chosen positive number:

1
V. + 502(5,7)521/55 + (r(S,7) —d(S,7)) SVsg —r(S, 7))V =0, (S,7) € Q,
(2.3) V(S,T) = max(S — E,0), S € [0, Smax].
V(0,7)=0, 7 €[0,T].

and
T

V(Smax> T) =Smax €Xp <_ / d(Smaxa 3)d3>

(2.4) e (_ /TT r(Smax,S)d8> T elo,T).

The existence and uniqueness of classical solution of (2.3)-(2.4) can be found in (see,
[17,18,19]). Here the boundary conditions are chosen according to Vazquez [13].

It is proved in [11] that if C and V are solutions of (2.1)-(2.2) and (2.3)-(2.4) respectively,
then at every point (S, 7) € (0, Smax) X [0, 7] satisfying ln(%) > —D(T — 1), we have

C(S,7) = V(S,7)| <IIC = V| (rx(r))
X [exp <_ (ln %) ((T - 7') X min{O,D} + IHS'%M)>] |

2(T — 7)[mings 1[0, Smax] x[0,7] 7255 T)]
where I = {0, Spax} and
D = inf {0*(S,7) — 2r(S, 7) + 2d(S,7) : (S,7) € Q}.

Since the final condition is not smooth, the resulting solution is not smooth enough for
the convergence of numerical aproximations [17]. Replacing max(S — E,0) in the terminal
condition by a smooth function ¢(S), we obtain
(25) We + 50*(8,7)8* Wss + ((S,7) — d(S, 7)) SWs —r(S, )W =0, (5,7) €,
with final condition
(2.6) W(S,T) = ¢(5), S €0, Smax],
and boundary conditions

wW(0,7) =0, 7 €[0,7]

T
(2.7) W (Smaxs T) = Smax €xXP (—/T d(Smax, s)ds>
T
— Eexp (—/ T(Smax,s)ds> , T €[0,T].
The existence and uniqueness of a classical solution of (2.5)-(11) can be found in [16], which

also contains the proof of the following estimate:
There exists a positive constant Kindependent of ¢(S) such that

(2'8) |V(S7T) - W(577)| < Kngb—maX(S— E>O)||L°°7 (S’T) € [07 Srnax] X [OaT]'

It follows from (2.5) and (2.8) that we can make the solution of model (2.5)-(11) become
close to that of the original model (2.1)-(2.2) by choosing sufficiently large Spax and sufficiently
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close approximation ¢ of final data. Further, we see that the partial differential equation given
in (2.5)-(11) is degenerate and backward in time, so we transform this partial differential
equation in to a non-degenerate and forward in time partial differential equation by using the
transformations: S = exp(z) = z =1n(S), and 7 =T —t = t =T — 7 respectively. We have

(2.9) U, = %62(x,t)Um + (f(x,t) —d(at) - ;62(33,75)) U,
(2.10) —7(x,)U, (z,t) € (—00, Tmax) X (0,T)
with final condition
(2.11) U(z,0) = Up(z), x € (—00, Tmax]
and boundary conditions
(2.12) U(z,t) =0, 2 — —o0, t €[0,T]
(2.13) U(Tmax,t) = Unax(t) t € [0, 7]
where

U(z,t) = W(S,7) = W(exp(z),T —t),

o(x,t) = o(exp(z), T — 1),

7(x,t) = r(exp(x), T —t),

d(z,t) = d(exp(z),T —t),

Uo(z) = ¢(exp()),

and

t t
Unax(t) = exp <a:max — / d(Zmax, S)d5> — Eexp (—/ 7(Zmax, s)ds> .
0 0

Now for computational purpose truncate the infinite interval (—oo, Zpax) into the finite
interval (Zmin, Tmax), Where z;, is a sufficiently small negative real number.

Let us consider a general form of (2.9)-(16) on the truncated region Q; = Q, x Q; =
(Zmins Tmax) X [0, T]:
(2.14) Lu(z,t) = f(x,t), (z,t) €
(2.15) u(z,0) = ¢o(x), © € Qy
(2.16) u(Tmin, t) = ¢1(t), t €
(2.17) W(Tmax, t) = or(t), t €Y
where L : C(1) N C*Y(Q1) — C(Q4) is defined as
2
L= gt — c)a(nv,t)aaw2 — 6<$,t)88x —y(x, t)I,

with a(z,t) > a > 0,v(z,t) < -7 < 0 on Q and «, 3,7, ¢o, ¢, dr, f are sufficiently smooth
functions.

Here we assume that the problem satisfies sufficient regularity and compatibility conditions
which guarantee the problem has a unique solution u € C(£21)NC?1(Q;) satisfying (see [16, 17]

)
’ iz, t)

< U 0<n< < < 5.
DD ‘_Coan,O_n_BandO_m—i-n_E)
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Note that C' is a generic constant.

3. Polynomial-based differential quadrature method (PDQM)

Differential quadrature method is a numerical technique for solving linear or nonlinear
differential equations. By this method, we approximate the spatial derivatives of unknown
function at any grid points using weighted sum of all the functional values at certain points
in the whole computational domain. Since the weighting coefficients are dependent only the
spatial grid spacing, we assume N grid points on the real axis with the same step length.
The differential quadrature discretizations of the first-and second-order spatial derivatives are
given by, respectively:

(3.1) o (x4, t Zaw u(zj,t), i=1,2,..., N,

(3.2) Uy (T, T wau zj,t), 1=1,2,...,N,

where a;; and b;; are the weighting CoePﬁClents of the first and second order partial derivatives
respectively and N is the total number of grid points taken in the interval [a, b].

There are many approaches to find these weighting coefficients such as Bellman’s ap-
proaches [1%], Quan and Chang’s approach [19, 20] and Shu’s approach [21]. Shu’s approach
is very general approach and in the recent years most of the differential quadrature methods
using various test functions such as Legendre polynomials, Lagrange interpolation polyno-
mials, spline functions, Lagrange interpolated cosine functions, are based on this approach.
These days in the literature, the most frequently used differential quadrature methods are
based on Lagrange interpolation polynomials and sine-cosine expansion. Korkmaz and Dag
[22, 23] proposed sine differential quadrature method and cosine expansion based differential
quadrature method for many nonlinear partial differential equations while Jiwari et al. [25-28]
have used polynomial based differential quadrature method for numerical solutions of some
nonlinear partial differential equations.

In order to obtain the weighting coefficients a;; and b;; the following base functions are
used

_ L(z ) _
(3.3) gr(z) = @=L (s’ k=1,2,...,N,

where L(z) = (z — x1)(z — x2) ... (z — xn) and

(3.4) = [] @-=x),i=12...,N
k=1,k#i
Using the set of base functions given in Eq. (3.3), the weighting coefficients of the first
order derivative are found as [18]
LW (x;)

(35) Q5 = 7i7j:172>"'7N7i7£j7
T (@i - ) LW ()

(3.6) @i =— Y ay, i=1,2,...,N,
j=1j#i
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and for weighting coefficients of the second order derivative, the formula is [21]

(3.7) bij:2aij<a“’— 1 ),i,jzl,Q,...,N,i#j,
Ty — Ty
N
(3.8) bi =— Y by, i=12..,N
=15

3.1. Selections of grid points and stability. The accuracy, stability and rate of con-
vergence of the numerical solutions depend on the choice of grid points selected. It is well
known that uniformly grid points are not desirable (e.g. [28]). Therefore it is suggested that
non-uniformly spaced grid points may give better solutions. The zeros of some orthogonal
polynomials are commonly used as the grid points. In fact Bellman et al. [18] had proposed to
use the zeros of the Legendre polynomials as the grid points in one of his papers. The stabil-
ity of the DQM applied depends on the eigen values of differential quadrature discretization
matrices. These eigen values in turn vary much depend on the distribution of grid points.
It has been shown by Shu [21] in his book that the uniform grid point distribution does not
give stable solution which we have also noticed in our numerical experiments. According to
Shu the stable solution can be obtained when Chebyshev-Gauss-Lobatto grid points [35-41]
are chosen. The Chebyshev-Gauss-Lobatto grid points are given by

1 11— D)m )
(3.9) x¢:a+2<1—cos(N_)1>Lw, 1=1,2,...,N,

where L, = b — a is the length of the interval [a, b].

4. Implementation of method

On substituting the first and second order approximation of the spatial derivatives, obtained
by using PDQM discussed in Section 3, the Generalized Black-Scholes equation (2.14) can be
rewritten as

du(z;, t) al al
k=1 k=1
(4.1) + v(xg, t)u(zi, t) + fx,t), 2, € Q, i=1,2,...,N, t >0,

with initial condition

(4.2) u(zi, 0) = ¢o(xzi), i =1,2,..., N,
and Dirichlet boundary conditions (19)-(20). Thus, Eq. (4.1) is reduced into a set of ordinary
differential equations in time, that is, for i = 1,..., N, we have
dui
4.3 = L(u;
(43) = L)

where L is a spatial nonlinear differential operator. The time interval [0, T] is divided into M
small cells equally and let k = % (time mesh size). There are various methods to solve this
system of ODE. We preferred the optimal four-stage, order three strong stability-preserving
time-stepping Runge-Kutta (SSP-RK43) scheme [12] to solve the system of ODE. In this
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scheme the Eq. (4.3) is integrated from time ¢, (step k) to t; + At (step k + 1) through the
following operations

1
ul) = ok 4 iAtﬁ(uk)

u® — 0 %mqum)

2 1 1
B) — 2k 41y 1 (2)
u U +3u +6Atﬁ(u )
uF = 4B 1Atc(u(3>),

and consequently the solution u(z,t) at a particular time level is completely known.

5. Numerical experiments

In this section, to measure the accuracy of numerical solutions, difference between analytic
and numerical solutions at some specified time is computed by using maximum error norm
L.

exact __ unum” = max ‘uqxact _ unum’

Loo:Hu 1<5<N 7 7

The numerical rates of convergence (ROC) is calculated using the following formula

log (E(Ni-1)/E(N:))

ROC ~ )
lOg(Ni/Ni_l)

where E(Nj) is the maximum error norm Lo, when using N; gride poinst.

Example 1. In this example we consider the general Black-Scholes equation (2.1) for Eu-
ropean call option with ¢ = 0.4, r = 0.06, d = 0.02, £ =1 and T = 1. In this case the
exact solution of the Black-Sholes equation with final condition C(S,7T) = max(S — FE,0)
and boundary conditions C(0,7) =0 and C(S,7) = Sexp(—d(T — 7)) — Eexp(—r(T — 7)) as
S — oo is

(5.1) C(S,7) = SN(dy)exp(—d(T — 7)) — EN(dz2) exp(—r(T — 7)),
where
1 r 1
N(z) = — exp | —=y? | dy,
(z) Tw/_oo p( 2y>y
In(2 —d+ L2y (T =
di(S, 1) = n (k) + (7“0\/%0 ) i and da(S,7) = di(S,7) —oVT — T,
Now, we approximate the final condition ‘max(S — F,0)’ by sufficiently smooth function

‘¢(S)’ in the following manner.
The function ‘max(y,0)’ can be approximate by the smooth function

Y, yZE
Yy) =% cotay+cy’+-+egy’, —e<y<e
0’ ySE,
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TABLE 1. Max absolute error (Max. err.) and the numerical rates of conver-
gence (ROC) of the proposed method for Example 1, with time step length
At = 1075 and different total gride numbers N.

N — 10 20 40 80 160
For At =106

Max. err. 1.55E — 002 4.27FE —003 1.02FE —003 2.48FE —004 6.10E — 005
R.O.C . 1.8543 2.0624 2.0441 2.0237

where for sufficiently small e > 0 (see[17])
P(—€) =¥/ (—€) =¢"(—e) =" (=)
w(e) =6 ¥(e) =1, ¥"(e) =¢" () =W (e) =0,

by using these ten conditions one can easily find that

I
—
*
—~
|
[
~—
I
=

3% 1 3 35
DT o569 AT 2T G AT T 1286

7 5
Cg cg = c3=c5=cy=rcg=0,

646> " 256€7
this gives ¢(S) = (S — E).

Thus by using the above appproximation and the transformations S = exp(z) and ¢t = T'—7,
the original Black-Scholes equation, which is degenerate and backward in time, transformed in
to the following non-degenerate and forward in time partial differential equation with smooth
initial condition

Ut = AUy + ,Bux + Yu, ($7 t) S (xmina xmax) X (07 T)7
u(z,0) = ¢p(x),
U(ZTmin, t) = 0,
U(Tmax; t) = exXp(Tmax — dt) — Eexp(—rt),
where
u(z,t) = Clexp(x),T — 1), ¢o(z) = ¢p(exp(x)), a =0.08, = —0.04, and v = —0.06.
The transformed exact solution is
(5.2) u(z,t) = N(dy)exp(z — dt) — EN(d2) exp(—rt),
where

do(x,t) = dy(z,t) — oVt

For computational purpose here we assume that Tyin = —2, Tmax = 2 and € = 1075, The
numerical results of Example 1 are shown in Table 1 and Fig. 1.

Example 2. As the second example we consider the following general Black-Scholes type equation
up = o, gy + Bz, Oue + y(z, u + f(x,t), (z,t) € (—2,2) x (0,1),
with
afx,t) = 0.08(2 + (1 — t) sin(exp(z)))?,
B(x,t) = 0.06(1 + texp(—exp(z))) — 0.02 exp(—t — exp(x)) — a(x, 1),
~v(z,t) = —0.06(1 4 t exp(— exp(x))),
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Analytical solution
a [+7] <o

N

= O

FIGURE 1. Numerical (Left) and analytical (Right) solutions of Example 1 with time
step length At = 10~ and total gride number N = 25 up to time ¢t = 1

TABLE 2. Max absolute error (Max. err.) and the numerical rates of conver-
gence (ROC) of the proposed method for Example 2, with total number gride
N = 10 and different step lengths At.

At — 10—2 10-3 10~% 10~° 106
For N = 10

Max. err.  7.85FE — 003 7.86E — 004 7.86E —005 7.83FE — 006 7.88E — 007
R.O.C .. 1.8543 2.0624 2.0441 2.0237

where f(x,t) is chosen in such a way that u(z,t) = exp(x — t). For computational purpose here we
assume that Tmin = —2, Tmax = 2 and € = 1076, The numerical results of Example 2 are shown in
Table 2. The solution profile is given in Fig. 2.

To obtain the rate of convergence in the spatial direction, we fix the time step size to be At = 1076,
and increase the grid number in the S direction. As shown in Table 2, we find that the rate is
approaching 2, which indicates that our method is indeed second order convergent in the spatial
direction. Similarly, we fix the total number of grid points in the S direction and vary the number
of time intervals from 102 to 10%. From Table 2, it is quite clear that the rate is very close to 2.
Therefore, a second order convergence is also achieved in the time direction.

6. Conclusion

In this paper, we have proposed polynomial differential quadrature method based on Lagrange
interpolation to find the approximate solution of the generalized Black-Scholes equation, which is used
for option pricing. Polynomial differential quadrature method has been used for discretizing the spasial
derivatives and SSP-RK43 scheme for the time integration of resulting system of ordinary differential
equations. Comparisons of the computed results with exact solutions showed that the method has the
capability of solving the generalized Black-Scholes equation and is also capable of producing accurate
solutions with minimal computational effort. The performance of the technique for the considered
problems was measured by comparing with the exact solutions. It was seen that the combined technique
approximates the exact solution very well. It is suggested that the Chebyshev-Gauss-Lobatto grid
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+a (s3]

N

Analytical solution

= O

FIGURE 2. Numerical (Left) and analytical (Right) solutions of Example 2 with time
step length At = 10~ and total gride number N = 25 up to time ¢t = 1.

points produced accurate solutions. Finally, the authors conclude that the proposed methods give
very accurate and similar results to the exact solutions by choosing less number of grid points. It is
remained as a future study to prove the convergence of the presented method.
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