

Vol. 2 (2021), No. 1, 99–106 https://maco.lu.ac.ir

DOI: 10.52547/maco.2.1.10

Research Paper

CHARACTER AMENABILITY AND CHARACTER PSEUDO-AMENABILITY OF CERTAIN BANACH ALGEBRAS

KOBRA OUSTAD

ABSTRACT. In this paper, we study character amenability of semi-group algebras $\ell^1(S)$ and weighted semi-group algebras $\ell^1(S,\omega)$, for a certain semi-groups such as right(left) zero semi-group, rectangular band semi-group, band semi-group and uniformly locally finite inverse semi-group. In particular, we show that for a right (left) zero semi-group or a rectangular band semi-group, character amenability, amenability, pseudo - amenability of $\ell^1(S,\omega)$, for each weight ω , are equivalent. We also show that for an Archimedean semi-group S, character pseudo - amenability, amenability, approximate amenability and pseudo-amenable of $\ell^1(S)$ are equivalent.

MSC(2010): Primary 58B34, 58J42, 81T75.

Keywords: character amenability, character pseudo-amenable, rectangular band semi-group, Archimedean semi-group.

1. Introduction

The notions of amenability in Banach algebra was initiated by Jonson in [12]. Let \mathfrak{A} be a Banach algebra and E be a Banach \mathfrak{A} - bimodule. We regards the dual space E^* as a Banach \mathfrak{A} - bimodule with the following module actions:

$$(a.f)(x) = f(x.a), (f.a)(x) = f(a.x) (a \in \mathfrak{A}, f \in E^*, x \in E)$$

For a Banach algebra $\mathfrak A$ the projective tensor product $\mathfrak A \otimes \mathfrak A$ is a Banach $\mathfrak A$ -bimodule in a natural manner and the multiplication map $\pi: \mathfrak A \otimes \mathfrak A \longrightarrow \mathfrak A$ defined by $\pi(a \otimes b) = ab$ for $a,b \in \mathfrak A$ is a Banach $\mathfrak A$ -bimodule homomorphism.

Amenability for Banach algebras introduced by B. E. Johnson [12]. Let \mathfrak{A} be a Banach algebra and E be a Banach \mathfrak{A} -bimodule. A continuous linear operator $D: \mathfrak{A} \longrightarrow E$ is a derivation if it satisfies $D(ab) = D(a) \cdot b + a \cdot D(b)$ for all $a, b \in \mathfrak{A}$. Given $x \in E$, the inner derivation $ad_x: \mathfrak{A} \longrightarrow E$ is defined by $ad_x(a) = a \cdot x - x \cdot a$. A Banach algebra \mathfrak{A} is amenable if for every Banach \mathfrak{A} -bimodule E, every derivation from \mathfrak{A} into E^* , the dual of E, is inner.

An approximate diagonal for a Banach algebra \mathfrak{A} is a net $(m_i)_i$ in $\mathfrak{A} \widehat{\otimes} \mathfrak{A}$ such that $a \cdot m_i - m_i \cdot a \longrightarrow 0$ and $a\pi(m_i) \longrightarrow a$, for each $a \in \mathfrak{A}$. The concept of pseudo-amenability introduced by F. Ghahramani and Y. Zhang in [9]. A Banach algebra \mathfrak{A} is pseudo-amenable if it has an approximate diagonal. It is well-known that amenability of \mathfrak{A} is equivalent to the existence of a bounded approximate diagonal. One may see [15, 16, 18] for more details and related notions.

Date: Received: February 1,2021, Accepted: June 9, 2021.

The notions of biprojectivity and biflatness of Banach algebras introduced by Helemskii in [10]. A Banach algebra \mathfrak{A} is biprojective if there is a bounded \mathfrak{A} -bimodule homomorphism $\rho: \mathfrak{A} \longrightarrow \mathfrak{A} \widehat{\otimes} \mathfrak{A}$ such that $\pi o \rho = I_{\mathfrak{A}}$, where $I_{\mathfrak{A}}$ is the identity map on \mathfrak{A} . We say that \mathfrak{A} is biflat if there is a bounded \mathfrak{A} -bimodule homomorphism $\rho: \mathfrak{A} \longrightarrow (\mathfrak{A} \widehat{\otimes} \mathfrak{A})^{**}$ such that $\pi^{**} o \rho = k_{\mathfrak{A}}$, where $k_{\mathfrak{A}}: \mathfrak{A} \longrightarrow \mathfrak{A}^{**}$ is the natural embedding of \mathfrak{A} into its second dual.

Kaniuth, Lau and Pym have introduced and studied in [14] and [13], the notion of φ -amenability for Banach algebras, where $\varphi: \mathfrak{A} \longrightarrow \mathbb{C}$ is a character. In [20], and also M. S. Monfared in [19] introduced the notion of character amenability for Banach algebras. Let \mathfrak{A} be a Banach algebra over \mathbb{C} and $\varphi: \mathfrak{A} \longrightarrow \mathbb{C}$ be a character on \mathfrak{A} , that is, an algebra homomorphism from \mathfrak{A} in to \mathbb{C} , and let $\Phi_{\mathfrak{A}}$ denote the character space of \mathfrak{A} (that is, the set of all character on \mathfrak{A}).In [19], see also [20], Monfared introduced the notion of character amenable Banach algebras. He called \mathfrak{A} character amenable if it has a bounded approximate identity and it is φ - amenable for all nonzero character φ on \mathfrak{A} .

Character amenability for Banach algebras was introduced by Aghababa, Shi and Wu in [1]. These notions have been studied for various classes of Banach algebras. For more details see, [19, 14, 13, 20] and [4]. As such character amenability is weaker than the classical amenability introduced by Johnson in [12], so all amenable Banach algebras are character amenable.

It is show in [15], that the character amenability of semi-group algebra $\ell^1(S)$ implies that the semi-group S is amenable, and the authors focus on certain semi-groups such as inverse semi-group, Rees semi-group, Clifford semi-group and Brandt semi-group and study the character amenability of $\ell^1(S)$ in relation to the semi-group S.

Nasr-Isfahani and Nemati, in [22] introduced and studied a notion of *character amenability* based on the existence of a φ - approximate digonal that is not necessarily bounded. They study character pseudo- amenability of certain Banach algebras.

Let S be a semi-group and

$$\ell^1(S) = \{ f : S \to \mathbb{C}, ||f||_1 = \sum_{s \in S} |f(s)| < \infty \}.$$

We define the convolution of two elements $f,g\in\ell^1(S)$ by $(f*g)(s)=\sum_{uv=s}f(u)g(v)$, where $\sum_{uv=s}f(u)g(v)=0$, when there are no elements $u,v\in S$ with uv=s. Then $(\ell^1(S),*,\|.\|_1)$ becomes a Banach algebra, that is called the *semi-group algebra of S*.

Let S be a semi-group. A continuous function $\omega: S \longrightarrow (0, \infty)$ is a weight on S if $\omega(st) \leq \omega(s)\omega(t)$, for all $s,t \in S$. Then it is standard that

$$\ell^{1}(S,\omega) = \left\{ f = \sum_{s \in S} f(s)\delta_{s} : ||f||_{\omega} = \sum_{s \in S} |f(s)|\omega(s) < \infty \right\}$$

is a Banach algebra with the convolution product $\delta_s * \delta_t = \delta_{st}$. These algebras are called Weighted convolution algebras.

In [17], the authors introduced the *character pseudo- amenability* of semi-group algebras. No much work has been done to date on the character amenability version for weighted semi-group algebra $\ell^1(S,\omega)$ on a semi-group S, as in the other notions for amenability.

It will be good to study this and see how the character amenability of $\ell^1(S,\omega)$ affects the structure of S. Thus, in this work, we study the character pseudo - amenability and character amenability of semi-group algebras and weighted convolution algebras on certain semi-groups.

2. Preliminaries

We let $M_{\varphi_r}^{\mathfrak{A}}$ denote the class of Banach \mathfrak{A} - bimodule X for which the right module action of \mathfrak{A} on X is given by

$$x.a = \varphi(a)x \ (a \in \mathfrak{A}, \ x \in X, \ \varphi \in \Phi_{\mathfrak{A}}),$$

and $M_{\varphi_l}^{\mathfrak{A}}$ denote the class of Banach \mathfrak{A} -bimodule X for which the left module action of \mathfrak{A} on X is given by

$$a.x = \varphi(a)x \ (a \in \mathfrak{A}, \ x \in X, \ \varphi \in \Phi_{\mathfrak{A}}).$$

It is easy to see that the left module action of $\mathfrak A$ on the dual module X^* is given by

$$a.f = \varphi(a)f \ (a \in \mathfrak{A}, \ f \in X^*, \ \varphi \in \Phi_{\mathfrak{A}}).$$

Thus, we note that $X \in M_{\varphi_r}^{\mathfrak{A}}$ (resp. $X \in M_{\varphi_l}^{\mathfrak{A}}$) if and only if $X^* \in M_{\varphi_l}^{\mathfrak{A}}$ (resp. $X^* \in M_{\varphi_r}^{\mathfrak{A}}$). Let \mathfrak{A} be a Banach algebra and let $\varphi \in \Phi_{\mathfrak{A}}$, we recall from [20] and [19] that

- i) \mathfrak{A} is left φ -amenable if every continuous derivation $D: \mathfrak{A} \longrightarrow X^*$ is inner for every $X \in M^{\mathfrak{A}}_{\omega_r}$;
- ii) $\mathfrak A$ is right φ -amenable if every continuous derivation $D:\mathfrak A\longrightarrow X^*$ is inner for every $X\in M^{\mathfrak A}_{\varphi_l}$;
- iii) \mathfrak{A} is left character amenable if it is left φ -amenable for every $\varphi \in \Phi_{\mathfrak{A}}$;
- iv) \mathfrak{A} is right character amenable if it is right φ -amenable for every $\varphi \in \Phi_{\mathfrak{A}}$;
- v) \mathfrak{A} is character amenable if it is both left and right character amenable.

We also recall the following defintions from that, for $\varphi \in \Phi_{\mathfrak{A}}$, a left (right) φ -approximate digonal for \mathfrak{A} is a net (m_{α}) in $\mathfrak{A} \otimes \mathfrak{A}$ such that

(i)
$$||m_{\alpha}.a - \varphi(a)m_{\alpha}|| \to 0$$
 ($||a.m_{\alpha} - \varphi(a)m_{\alpha}|| \to 0$) $(a \in \mathfrak{A})$;

(ii)
$$\langle \varphi \otimes \varphi, m_{\alpha} \rangle = \varphi(\pi(m_{\alpha})) \to 1$$
,

where $\pi: \mathfrak{A} \otimes \mathfrak{A} \to \mathfrak{A}$ defined by $\pi(a \otimes b) = ab \ (a, b \in \mathfrak{A})$ is the product map. The notion of φ -approximate digonal was introduced and studied by Hu, Monfared and Traynor [20]. Let \mathfrak{A} be a Banach algebra and $\varphi \in \Phi_{\mathfrak{A}}$. We recall from [21] that

- (i) \mathfrak{A} is φ -pseudo-amenable if there is a φ -approximate digonal for \mathfrak{A} ;
- (ii) \mathfrak{A} is character pseudo amenable if \mathfrak{A} has a right approximate identity and it is φ -pseudo-amenable for all $\varphi \in \Phi_{\mathfrak{A}}$.

3. Character amenability of semi-group algebras

In the section, we prove some general results for semi-group algebras. It is clear that every biprojective Banach algebra is biflat. Also we recall that a Banach algebra $\mathfrak A$ is amenable if and only if it is biflat and has a bounded approximate identity. By [19, Theorem 2.6], If $\mathfrak A$ is character amenable, then $\mathfrak A$ has a bounded approximate identity. So we can have the following results.

A semi-group S is a left zero semi-group if st = s, and it is a right zero semi-group if st = t for each $s, t \in S$.

Proposition 3.1. Suppose that S is a right (left) zero semi-group. Then $\ell^1(S)$ is character amenable if and only if it is amenable.

proof: From [6, proposition 3.1], $\ell^1(S)$ is biflat. Since $\ell^1(S)$ is character amenable, thus $\ell^1(S)$ has a bounded approximate identity. By the above argument, $\ell^1(S)$ is amenable. \square Let S be a semi-group and let $E(S) = \{p \in S : p^2 = p\}$. We say that S is a band semi-group if S = E(S). A band semi-group S satisfying sts = s, for each $s, t \in S$ is called a rectangular band semi-group.

Corollary 3.2. Let S be a rectangular band semi-group. Then $\ell^1(S)$ is character amenable if and only if it is amenable.

proof For a rectangular band semi-group S, it is known that $S \simeq L \times R$, where L and R are left and right zero semi-groups, respectively [11, Theorem 1.1.3]. So,

$$\ell^1(S) \cong \ell^1(L \times R) \cong \ell^1(L) \otimes \ell^1(R).$$

Since $\ell^1(S)$ is character amenable, now by [1, proposition 6.3], $\ell^1(L)$ and $\ell^1(R)$ are character amenable. From proposition 3.1, it follows that $\ell^1(L)$ and $\ell^1(R)$ are amenable, so $\ell^1(S)$ is amenable.

Corollary 3.3. Let S be a rectangular band semi-group. Then the following are equivalent: $(i) \ell^1(S)$ is character amenable.

- (ii) $\ell^1(S)$ is amenable.
- (iii) S is singleton.

proof From corollary 3.2, (i) and (ii) is equivalent and also by [6, theorem 3.3], (ii) and (iii) are equivalent.

Let S be a band semi-group. Then by [11, Theorem 4.4.1], S is a semilattice of rectangular band semi-groups. Indeed, $S = \bigcup_{\alpha \in Y} S_{\alpha}$ where $Y = \frac{S}{\tau}$ and for each $\alpha = [s] \in Y$, $S_{\alpha} = [s]$.

Theorem 3.4. Suppose that S be a band semi-group. If $\ell^1(S)$ is character amenable, then S is a finite semilattice.

proof: By the above argument, let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ is a semilattice of rectangular band semi-groups and $\ell^1(S)$ is character amenable. Indeed, we have $S_{\alpha}.S_{\beta} \subseteq S_{\alpha\beta}$ for each $\alpha, \beta \in Y$. It follows that $\ell^1(S)$ is ℓ^1 -graded of $(\ell^1(S_{\alpha}))$'s over the semilattice Y. Indeed, we have

$$\ell^1(S) \cong \bigoplus_{\alpha \in Y} \ell^1(S_\alpha).$$

By [1, proposition 6.3], $\ell^1(S_\alpha)$ is character amenable and Y is finite. Since each S_α is rectangular band semi-group, so by corollary 3.3, S_α is singleton for each $\alpha \in Y$. So S is isomorphic to Y. Thus, S is a semilattice .

Corollary 3.5. Let S be a uniformly locally finite band semi-group. Then, the following are equivalent:

- (i) $\ell^1(S)$ is character amenable.
- (ii) S is a finite semilattice.
- (iii) $\ell^1(S)$ is approximately amenable.
- (iv) $\ell^1(S)$ is amenable.

proof: $(i) \rightarrow (ii)$, by theorem 3.4 and $(ii) \longleftrightarrow (iii) \longleftrightarrow (iv)$ from [26, corollary 4.9] and also $(iv) \longleftrightarrow (i)$, is clear.

3.1. Character amenability of weighted semi-group algebras. In this section, we extend the results for $\ell^1(S)$ to the weighted case $\ell^1(S,\omega)$. For $f,g \in \ell^1(S,\omega)$, it is obvious that $f*g = \varphi_S(f)g$ if S is a right zero semi-group, and $f*g = \varphi_S(g)f$ if S is a left zero semi-group, where φ_S is the augmentation character on $\ell^1(S,\omega)$.

Proposition 3.6. Suppose that S is a right (left) zero semi-group and ω be a weight on S. Then $\ell^1(S,\omega)$ is character amenable if and only if S is singleton.

proof: From [23, Proposition 2.1], $\ell^1(S,\omega)$ is biflat. Since $\ell^1(S,\omega)$ is character amenable so it has a bounded approximate identity and thus is amenable. Now it is immediate by [23, Proposition 2.5].

Corollary 3.7. Let S be a right (left) zero semi-group and ω be a weight on S. Then the following are equivalent:

- (i) $\ell^1(S,\omega)$ is character amenable.
- (ii) S is singleton.
- (iii) $\ell^1(S,\omega)$ is pseudo-amenable.
- (iv) $\ell^1(S,\omega)$ is amenable.

Proof. By proposition 3.6 and [23, corollary 2.8] is clear.

Theorem 3.8. Let S be a rectangular band semi-group and ω be a weight on S. Then $\ell^1(S,\omega)$ is character amenable if and only if S singleton.

Proof: suppose that $\ell^1(S, \omega)$ be character amenable, by [18, Theorem 3.4], has a bounded approximate identity and by [23, proposition 2.3] is biflat. So, [23, Theorem 2.4] completes the proof.

The following is a combination of Theorems 3.8 and [23, corollary 2.9].

Corollary 3.9. Let S be a rectangular band semi-group, and let ω be a separable weight on S. Then the following are equivalent:

- (i) $\ell^1(S,\omega)$ is character amenable.
- (ii) S is singleton.
- (iii) $\ell^1(S,\omega)$ is pseudo-amenable.
- (iv) $\ell^1(S,\omega)$ is amenable.

Let (P, \leq) is a partially ordered set. Then (P, \leq) is locally finite if $(x] = \{y \in S : y \leq x\}$ is finite for every $x \in S$, and it is uniformly locally finite if $\sup\{|(x]| : s \in S\} < \infty$.

We recall that a semi-group S is an *inverse semi-group* if for each $s \in S$ there exists a unique element $s^* \in S$ with $ss^*s = s$ and $s^*ss^* = s^*$.

Let S be an inverse semi-group. We define an equivalence relation D on S by sDt if and only if there exists $x \in S$ such that $s^*s = xx^*$ and $t^*t = x^*x$. Let $\{D_{\lambda} : \lambda \in \Lambda\}$ be the collection of all D_{-} classes of S. For each $p_{\lambda} \in E(D_{\lambda})$, the maximal subgroup of S at p_{λ} is denoted by $G_{p_{\lambda}}$. It is easily verified that $G_{p_{\lambda}} = \{s \in S : ss^* = s^*s = p_{\lambda}\}$. The following result is Theorem 2.3 and Corollary 2.5 of [7].

Theorem 3.10. Let S be a semi-group and ω be a weight on S.

- (i) If $\omega \geq 1$ and $\ell^1(S,\omega)$ is character amenable, then $\ell^1(S)$ is character amenable.
- (ii) If $\omega \leq 1$ and $\ell^1(S)$ is character amenable, then $\ell^1(S,\omega)$ is character amenable

Corollary 3.11. Let $S = M^0(G, I)$ be the Brandt semi-group and ω be a weight on S. Then the following are equivalent:

- (i) $\ell^1(S,\omega)$ is character amenable.
- (ii) $\ell^1(S)$ is character amenable.
- (iii) I is finite and in the case where |I| = 1 then G is amenable.

We now consider character amenability of $\ell^1(S,\omega)$, where S is a uniformly locally finite inverse semi-group and $\omega \geq 1$.

Theorem 3.12. Let S be a uniformly locally finite inverse semi-group and $\omega \geq 1$ be a weight on S. Then $\ell^1(S,\omega)$ is character amenable, if and only if E(S) is finite and G_{p_λ} is amenable for each $\lambda \in \Lambda$ with $|E(D_\lambda)| = 1$.

proof: Let $\ell^1(S,\omega)$ be character amenable, By theorem 3.10, $\ell^1(S)$ is character amenable, so by [5, theorem 2.6] is clear. Conversely, since E(S) is finite and S is inverse, then S has a principal series

$$S = S_1 \supset S_2 \supset S_3 \supset \dots \supset S_{m-1} \supset S_m = K(S)$$

of ideals of S, where K(S) is the minimum ideal, see [19, theorem 3.12]. $\frac{S_i}{S_{i+1}}$ is a simple inverse semi-group with a finite number of idempotents, and so is a group. Also, for i=1,2,...,n-1, $\frac{S_i}{S_{i+1}}$ is 0-simple with a finite number of idempotents, and so is a completely 0-simple inverse semi-group, that is a Brandt semi-group. By corollary 3.11, $\ell^1(S,\omega)$ is character amenable if and only if $\ell^1(S)$ is character amenable and by proof of [15, proposition 3.1], $\ell^1(S)$ is character amenable if and only if $\ell^1(\frac{S_i}{S_{i+1}})$ is character amenable for i=1,2,...,n-1. For i=1,2,...,n-1, let G_i be the group of the Brandt semigrop $\frac{S_i}{S_{i+1}}$ and $\ell^1(\frac{S_i}{S_{i+1}})$ is amenable if G_i is amenable for i=1,2,...,n-1. So $\ell^1(S,\omega)$ is character amenable if G_i is amenable and the groups G_i are maximal subgroups of S.

Corollary 3.13. Let S be a uniformly locally finite semilattice and $\omega \geq 1$ be a weight on S. Then $\ell^1(S,\omega)$ is character amenable, if and only if S is finite.

proof: Suppose that $\ell^1(S,\omega)$ is character amenable, then by theorem 3.10 and [5, theorem 2.6] is clear.

Conversely, since S is finite, $\ell^1(S) \cong \ell^1(S, \omega)$ and $\ell^1(S)$ is finite-dimensional. Then by [5, corollary 2.8], $\ell^1(S)$ is character amenable so $\ell^1(S, \omega)$ is character amenable.

4. Character pseudo - amenability of semi-group algebras

In this section, we would like to present a class of commutative semi-groups S which character pseudo-amenability and approximate amenability over $\ell^1(S)$ are equivalent. Recall that a semi-group S is Archimedean if S is commutative and for each $s,t\in S$ there exists $n\in\mathbb{N}$ such that

$$s^n \in tS = \{tu : u \in S\}.$$

Theorem 4.1. Let S be an Archimedean semi-group. If $\ell^1(S)$ is character pseudo-amenable, then for each $s, t \in S$, Ss = St and S has an idempotent element.

Proof. Suppose that $\ell^1(S)$ is character pseudo-amenable. By definition of character pseudo - amenability, $\ell^1(S)$ has a right approximate identity and so $\overline{\ell^1(S)^2} = \ell^1(S)$. We know that $\ell^1(St)$ is a complemented and so $\ell^1(St)$ is weakly complemented ideal of $\ell^1(S)$. It follows that

 $\ell^1(St)$ has a right approximate identity. Now, we conclude that $\overline{\ell^1(St)^2} = \ell^1(St)$ and so StSt = St. This implies that $St^m = St$ for each $t \in S$ and $m \in \mathbb{N}$. Fix two element $s, t \in S$. Since S is Archimedean, there is $n \in \mathbb{N}$ such that $s^n \in St$. Thus, we have $Ss \subseteq St$ and so we have Ss = St.

To prove the second part, we use the result of the previous part. So we conclude $S = S^2 = \bigcup_{t \in S} St$ and S = St for all $t \in S$. Fix an element $t \in S$. There exist $u, v \in S$ such that t = ut and u = vt. Thus,

$$u^2 = vtvt = vut = vt = u$$

and the proof is complete.

In the sequel, we show that if S is Archimedean semi-group, then character pseudo-amenability, pseudo-amenability, amenability and approximate amenability for $\ell^1(S)$ are equivalent.

Theorem 4.2. Let S be an Archimedean semi-group. Then the following are equivalent:

- (i) $\ell^1(S)$ is character pseudo-amenable.
- (ii) S is an amenable group.
- (iii) $\ell^1(S)$ is pseudo-amenable.
- (iv) $\ell^1(S)$ is amenable.
- (v) $\ell^1(S)$ is approximately amenable.

Proof. $(i) \to (ii)$ Let $\ell^1(S)$ is character pseudo-amenable. By theorem 4.1, for $u \in E(S)$, we have S = Su. It follows that u is the identity element of S. Now, if ts = ks then exists $v \in S$ such that u = sv. Thus,

$$t = tu = tsv = ksv = ku = k.$$

Therefore S is cancellative and by [17, corollary 4.6], S is amenable group.

- $(ii) \longleftrightarrow (iii) \longleftrightarrow (iv) \longleftrightarrow (v)$ follows from [27, theorem 2.3].
- $(v) \rightarrow (i)$ follows from [22, corollary 2.6].

References

- H. Pourmahmood- Aghababa, L.Y. Shi and Y. J. Wu, Generalized notions of character amenability, Acta Mathematica Sinica, English series, 29, Issue 7, (2013), 1329-1350.
- [2] H. G. Dales, Banach algebras and automatic continuity, *London Mathematical Society Monographs*, *New Series*, Volume **24**, The Clarendon Press Oxford, 2000.
- [3] H. G. Dales, A. T. Lau and D. Strauss, Banach algebras on semi-groups and their compactifications, *Mem. Amer. Math. Soc.*, 2010.
- [4] G. H. Esslamzadeh. Banach algebra structute and amenability of a class of matrix algebra with application. J. Functional Analysis. 161 (1999). 361-383.
- [5] M. Essmaili, M. Filali, φ- Amenability and character amenability of some classes of Banach algebras, Houston Journal of Mathematics, Vol. 39, No. 2(2013). 515-530.
- [6] M. Essmaili and A. Medghalchi, Biflatness of certain semi-group algebra, Bull. Iran. Math. Soc., 39 (2013), 959-969.
- [7] M. Essmaili, M. Rostami, Amenability of weighted semi-group algebrs based on character. *The 46th Annual Iranian Mathematics Conference*, 2015.
- [8] M. Essmaili, M. Rostami, and A. R. Medghalchi, Pseudo-contractibility and Pseudo-amenability of semi-group algebrs, Arch. Math. 97 (2011), 167-177.
- [9] F. Ghahramani and Y. Zhang, Pseudo-amenable and Pseudo-contractible Banach algebras, *Math. Proc. Cambridge Phil. Soc.*, **142** (2007), 111-123.
- [10] A. Ya. Helemskiř, Flat Banach modules and amenable algebras, Trans. Moscow Math. Soc. 47 (1985), 199-224.

- [11] J. M. Howie, Fundamentals of semi-group theory, London Mathematical Society Monographs, Volume 12, The Clarendon Press Oxford, 1995.
- [12] B.E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
- [13] E. Kaniuth, A. T. Lau and J. S. Pym, On character amenability of Banach algebras, J, Math. Anal. Appl. 344 (2008), 942-955.
- [14] E. Kaniuth, A. T. Lau and J. S. Pym, On φ -amenaibility of Banach algebras, *Math. Proc. Cambridge philos. Soc.* **144** (2008), 85-96.
- [15] S. M. Maepa and O. T. Mewomo, On character Amenability of semi-group algebrs, Quaestiones Mathematices, (2015), 307-318.
- [16] O. T. Mewomo and S. M. Maepa, On character Amenability of Beurling and second dual algebras, Acta Universitatis Apulensis, No. 38/2014, 67-80.
- [17] O. T. Mewomo, A. A. Mebawondu, U. O. Adiele, P. O. Olanipekun, On character pseudo-amenability semi-group algebras, *Proceedings of the Jangjeon Mathematical Society*, 20 (2017), No. 4. pp. 583-593.
- [18] O. T. Mewomo, Note On character amenability in Banach algebras, Math. Reports ,19 (69), 3 (2017), 293-312.
- [19] M. S. Monfared, Character amenability of Banach algebras, *Math. Proc. Cambridge philos. Soc.* **144** (2008), 697-706.
- [20] Z. Hu, M. S. Monfared and T. Traynor, On character amenable of Banach algebra, Studia Math. 193 (1) (2009), 53-78.
- [21] R. Nasr-Isfahani and M. Nemati, Character pseudo-amenability of Banach algebras, Colloquium Mathematicum. 132 (2013), 177-193.
- [22] R. Nasr-Isfahani and M. Nemati, Cohomological Characterization of Character pseudo-amenability Banach algebras, Bull. Aust. Math. Soc. 84 (2011), 229-237.
- [23] K. Oustad, A, Mahmoodi, Pseudo-amenability of weighted semi-group algebrs, Journal of mathematical Extension, Vol. 14, No. 4, (2020),91-99.
- [24] A. L. T. Paterson, Amenability, Mathematical Surveys and Monographs, Number 29, American Mathematical Society, Providence, RI, 1988.
- [25] P. Ramsden, Biflatness of semi-group algebras, semi-group Forum. 79 (2009), 515-530.
- [26] M. Rostami , A. Pourabbas , M. Essmaili , Approximate amenability of certain inverse semi-group algebras, *Acta Mathematica Scientia 2013* , **33** B (2) ,565-577.
- [27] M. Soroushmehr .M. Rostami. M. Essmaili, On pseudo-amenability of commutative semi-group algebras and their second duals, semi-group Forum, Springer Science+Business Media, LLC (2017).
- [28] J. Zhang, Character amenable Banach algebras, University of windsor, Scholarship at UWindsor, 2012.

(Kobra Oustad) Dehdasht of Mathematics, Dehdasht Branch, Islamic Azad University, Dehdasht, Iran.

Email address: ostad.kobra@gmail.com