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Abstract. In this paper, we review some properties of the entropy of random dynamical
systems. We define a local entropy map for random dynamical systems and study some of
its properties. We extract the entropy of random dynamical systems from the introduced
map.
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1. Introduction

Random dynamical systems, abbreviated by RDS, are generalizations of deterministic dy-
namical systems, in the sense that, at each time step a transformation is chosen randomly
from a given family according to some probability distribution [1]. Indeed, an RDS is char-
acterized by a state space X, a probability space (Ω,F ,P), with a usually P-ergodic map
θ : Ω → Ω, for which the assignment ω 7−→ φω is done randomly.

Many subjects in the ergodic theory of deterministic dynamical systems are discussed
for RDSs. Invariant measures, ergodic measures, random ergodic theorems and entropy of
random dynamical systems are among the concepts which are discussed for RDSs [2, 31, 11].
These concepts are mainly motivated from deterministic dynamical systems.

Local approaches to the entropy of dynamical systems are discussed and studied extensively
[30, 18, 5, 6, 29, 20, 16]. Motivated by localization of entropy in deterministic dynamical
systems [25, 26, 27], we present a local view to the entropy of RDSs. To do this, we introduce
a map which is defined at each point of the space Ω×X and is nearly related to the entropy
of the RDS defined on Ω×X, in the sense that the entropy of an RDS may be extracted by
integration of the introduced map.

In Section 2, we provide some preliminary concepts and backgrounds which are necessary
for the rest of the paper. In Section 3, we present a local approach to the entropy of RDSs.
We conclude the paper with a concluding remark.

2. Preliminary facts

In this section, we review some preliminary concepts and facts. The definitions and concepts
discussed in this section are mainly from [7, 8]. One may see [1, 11, 12, 14] for general theory
of RDS. Let X be a compact metric space with the Borel σ-algebra BX . We also write
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C(X,X) for the set of continuous functions f : X → X with C0-topology. Let also (Ω,F ,P)
be a countably generated probability space, and θ : Ω → Ω an invertible P-ergodic system.

A measurable map φ : (Ω,F ,P) → C(X,X) defined by ω 7→ φω is called a random
dynamical system on X over (Ω,F ,P, θ).

The skew product transformation associated with a random dynamical system φ is defined
by

Φ : Ω×X → Ω×X

(ω, x) 7→ (θ(ω), φω(x)).

For n ≥ 1 we also write

φnω :=

{
idX n = 0

φθn−1(ω) ◦ ... ◦ φθ(ω) ◦ φω n ≥ 1

If πΩ : Ω×X → Ω is the projection on Ω, we easily have πΩ ◦ Φ = θ ◦ πΩ.
A probability measure µ on (Ω×X,F × BX) is said to be φ-invariant if
(1) µ is invariant under Φ.
(2) π∗Ωµ = P, where π∗Ωµ : F → [0, 1] defined by π∗Ωµ(Λ) = µ(π−1

Ω (Λ)) is called the
marginal of µ.

We denote the collection of φ-invariant measures by IP(φ).
An invariant measure µ on F × BX is called φ-ergodic if µ is Φ-ergodic. The collection of

all φ-ergodic measures is denoted by EP(φ).

2.1. Disintegration of a measure. In the rest of the paper, we assume that µ disintegrates
with respect to P, i.e, there is a family of conditional probability measures {µω}ω∈Ω on BX
such that dµ(ω, x) = dµω(x)dP(ω). Indeed, If X is a Polish space, then any φ-invariant
measure µ has a unique disintegration [1].

Note that, the previous condition is equivalent to

µ(D) =

∫
Ω

∫
X
χD(ω, x)dµ(x)dP(ω),

for D ∈ F × BX .
Also, the condition dµ(ω, x) = dµω(x)dP(ω) results in the following:
(1)

∫
Ω×X fdµ =

∫
Ω

∫
X f(ω, x)dµω(x)dP(ω) for all f ∈ L1(µ).

(2) If A ∈ F × BX and ω ∈ Ω, then

µ(A) =

∫
Ω
µω(Aω)dP(ω),

where Aω = {x ∈ X : (ω, x) ∈ A} is the ω-section of A.

2.2. Weak* topology. Denote ∥f∥b := sup
x∈X

|f(x)| for any f ∈ C(X). A function f : Ω →

C(X), ω 7→ fω = f(ω, .) is called measurable if the function (ω, x) 7→ fω(x) = f(ω, x) is
measurable. The set of all measurable functions f : Ω → C(X) with ∥f∥ :=

∫
Ω ∥fω∥bdP(ω) <

+∞ is denoted by L1
P(Ω, C(X)). It is easily seen that L1

P(Ω, C(X)) is a Banach space.
Let M(X) be the set of all complex Borel measures on X, equipped by the norm ∥ · ∥ =

| · |(X). Now let L∞
P (Ω,M(X)) be the set of functions µ : Ω → M(X), ω 7→ µω with

||µ||∞ < +∞ where
∥µ∥∞ := inf{M > 0 : ∥µω∥ = |µω|(X) < M, for P.a.e. ω in Ω}
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Since M(X) is the dual of C(X) we will have:
L1
P(Ω, C(X))∗ = L∞

P (Ω,M(X)).

This induces the weak* topology on IP(µ) ⊂ L∞
P (Ω,M(X)). Indeed, for {µn}n≥1 and µ in

IP(µ) we have:

µn → µ⇐⇒ ∀f ∈ L1
P(Ω, C(X))

∫
Ω×X

fdµn →
∫
Ω×X

fdµ.

In light of Krein-Milman theorem, we have the following proposition.

Proposition 2.1. Let X be a compact metric space and φ be a continuous random dynamical
system over (Ω,F ,P, θ). Then

(1) IP(φ) is a non-empty convex compact subset of L∞
P (Ω,M(X)).

(2) The set of extreme points of IP(φ) is equal to EP(φ).

For a compact metric space X, C(X) is separable. Since (Ω,F ,P) is countably generated,
L1
P(Ω, C(X)) is also separable, so the topology of weak convergence of the compact Hausdorff

space L∞
P (Ω,M(X)) will be metrizable. Therefore, applying the Choquet’s theorem [19] to

IP(φ), we have the following ergodic decomposition for the elements of IP(φ).

Proposition 2.2. Suppose that P is θ-ergodic. Then for each µ ∈ IP(φ) there exists a unique
Borel probability measure τ = τµ on the σ-algebra of Borel subsets of IP(φ) with τµ(EP(φ)) = 1
and that ∫

Ω×X
fdµ =

∫
EP(φ)

(∫
Ω×X

fdν

)
dτµ(ψ)

for any f ∈ L1
P(Ω, C(X)).

Under the assumptions of the previous proposition, we write µ =
∫
EP(φ)

νdτµ(ν) and call it
the ergodic decomposition of µ.

2.3. The entropy of random dynamics. The entropy of dynamical systems was first
defined in [13, 32], and then was studied from other view points in [10, 17, 20, 28, 29].

Using the ideas in classical dynamical systems, this quantity is formulated for random
dynamical systems [7, 8, 35, 34].

Let ξ be a finite measurable partition of Ω×X. For ω ∈ Ω, set ξω = {Dω}ω∈Ω, where Dω

is the ω-section of D. Clearly, ξω is a finite partition of X.
For ω ∈ Ω, set

Hµω(
n−1∨
i=0

(φiω)
−1ξθi(ω)) := −

∑
A∈

∨n−1
i=0 (φi

ω)
−1ξθi(ω)

µω(A) log µω(A)

and

(2.1) hrµ(φ, ξ) := lim
n→∞

1

n

∫
Ω
Hµω(

n−1∨
i=0

(φiω)
−1ξθi(ω))dP(ω).

Note that, the limit in (2.1) exists. Also, if P is θ-ergodic, then

(2.2) hrµ(φ, ξ) = lim
n→∞

1

n
Hµω(

n−1∨
i=0

(φiω)
−1ξθi(ω))
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for P.a.e.ω in Ω.
Finally, the entropy of the random dynamical system φ is defined as hrµ(φ) = supξ h

r
µ(φ, ξ)

where the supremum is taken over all finite measurable partitions of Ω × X. We also have
the following lemma.

Lemma 2.3. Given any partition ξ of Ω×X, the mapping µ 7→ hrµ(φ, ξ) is affine.

Proof. Let µ, ν ∈ IP(φ) and λ ∈ [0, 1]. First note that, if {µω}ω∈Ω and {νω}ω∈Ω are
disintegrations of µ and ν respectively, then {λµω + (1 − λ)νω}ω∈Ω is a disintegration of
λµ+ (1− λ)ν. On the other hand, for ω ∈ Ω and n ≥ 1, since the function η(s) = −s log s is
concave and γ(s) = log s is increasing, we have:

0 ≤ Hλµω+(1−λ)νω(ξ
n
ω)− λHµω(ξ

n
ω)− (1− λ)Hνω(ξ

n
ω) ≤ log 2

where ξnω :=
∨n−1
i=0 (φ

i
ω)

−1ξθi(ω). Finally, the previous inequalities easily result in
hrλµ+(1−λ)ν(φ, ξ) = λhrµ(φ, ξ) + (1− λ)hrν(φ, ξ)

which completes the proof. □

At the end of this section, we review the Abramov-Rokhlin theorem which connects the
entropy of a random dynamical system hrµ(φ) to the classical Kolmogrov entropies hµ(Φ) and
hP(θ).

Theorem 2.4. [3] Let φ : (Ω,F ,P) → C(X,X) be a random dynamical system on X over
(Ω,F ,P, θ) and Φ be the corresponding skew product. Then, we have

hµ(Φ) = hrµ(φ) + hP(θ).

3. Local Approach

In this section, we present a local approach to the entropy of random dynamical systems.
It obviously results in a local entropy for classical dynamical systems as a special case.

In the rest of paper, X is a compact metric space, φ : (Ω,F ,P) → C(X,X) is a continuous
random dynamical system on X over (Ω,F ,P, θ) and Φ is the corresponding skew product.

Definition 3.1. For ω ∈ Ω, x ∈ X and D ∈ F × BX , set

γφ(ω, x,D) := lim sup
n→∞

1

n
card({0 ≤ j ≤ n− 1 : φjω(x) ∈ Dθj(ω)}).

Definition 3.2. Let ω ∈ Ω, x ∈ Xand ξ be a finite measurable partition of Ω × X. Let
g : [0, 1] → R be the function defined by g(0) = 0 and g(s) = −s log s (s ∈ (0, 1]). Set

(3.1) Γφ(ω, x; ξ) :=
∑
D∈ξ

g(γφ(ω, x,D)).

Definition 3.3. The local entropy map of the random dynamical system φ over (Ω,F ,P, θ)
with respect to the partition ξ, is a map J r

φ(·, ·; ξ) : Ω×X → R defined by
J r
φ(ω, x; ξ) := Jφ(ω, x; ξ)− hP(θ),

where

Jφ(ω, x; ξ) := lim sup
n→∞

1

n
Γφ(ω, x;

n−1∨
i=0

(Φi)−1ξ).
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The conditional version of (3.1) is also defined as follows:

Γφ(ω, x; ξ|η) := −
∑

A∈ξ,B∈η
γφ(ω, x,A ∩B) log

γφ(ω, x,A ∩B)

γφ(ω, x,B)
.

The following proposition states some of the properties of the previous quantities.

Proposition 3.4. Let ω ∈ Ω, x ∈ X and ξ, η and ζ be finite measurable partitions of Ω×X.
Then,

(1) 0 ≤ Γφ(ω, x; ξ|ζ) ≤ Γφ(ω, x; ξ ∨ η|ζ).
(2) Γφ(ω, x; ξ ∨ η|ζ) ≥ Γφ(ω, x; ξ|ζ) + Γφ(ω, x; η|ξ ∨ ζ).
(3) If ξ < η then Γφ(ω, x; ξ|ζ) ≤ Γφ(ω, x; η|ζ).

Proof.

(1) First note that, for ω ∈ Ω and x ∈ X, we have:

(3.2)
∑
B∈η

γφ(ω, x,A ∩B ∩ C) ≥ γφ(ω, x,A ∩ C).

Applying (3.2), we will have:

Γφ(ω, x; ξ ∨ η|ζ) = −
∑

A∈ξ,B∈η,C∈ζ
γφ(ω, x,A ∩B ∩ C) log γφ(ω, x,A ∩B ∩ C)

γφ(ω, x, C)

≥ −
∑

A∈ξ,B∈η,C∈ζ
γφ(ω, x,A ∩B ∩ C) log γφ(ω, x,A ∩ C)

γφ(ω, x, C)

≥ −
∑

A∈ξ,C∈ζ
γφ(ω, x,A ∩ C) log γφ(ω, x,A ∩ C)

γφ(ω, x, C)

= Γφ(ω, x; ξ|ζ).

(2) Let ξ, η and ζ be finite measurable partition of Ω×X. Without loss of generality, we
may assume that γφ(ω, x,B) > 0 for all sets in ξ, η and ζ. Now, we have:

Γφ(ω, x; ξ ∨ η|ξ) = −
∑

A∈ξ,B∈η,C∈ζ
γφ(ω, x,A ∩B ∩ C) log γφ(ω, x,A ∩B ∩ C)

γφ(ω, x, C)
.

Since

γφ(ω, x,A ∩B ∩ C)
γφ(ω, x, C)

=
γφ(ω, x,A ∩B ∩ C)
γφ(ω, x,A ∩ C)

.
γφ(ω, x,A ∩ C)
γφ(ω, x, C)
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(Note that, if γφ(ω, x,A∩C) = 0, the left hand side is zero and we need not consider
it), then

Γφ(ω, x; ξ ∨ η|ζ) = −
∑

A∈ξ,B∈η,C∈ζ
γφ(ω, x,A ∩B ∩ C) log γφ(ω, x,A ∩ C)

γφ(ω, x, C)

−
∑

A∈ξ,B∈η,C∈ζ
γφ(ω, x,A ∩B ∩ C) log γφ(ω, x,A ∩B ∩ C)

γφ(ω, x,A ∩ C)

≥ −
∑

A∈ξ,C∈ζ
γφ(ω, x,A ∩ C) log γφ(ω, x,A ∩ C)

γφ(ω, x, C)
+ Γφ(ω, x; η|ξ ∨ ζ)

= Γφ(ω, x; ξ|ζ) + Γφ(ω, x; η|ξ ∨ ζ).

(3) Since ξ < η then ξ ∨ η = η. Therefore, applying part (ii),

Γφ(ω, x; η|ζ) = Γφ(ω, x; ξ ∨ η|ζ) ≥ Γφ(ω, x; ξ|ζ) + Γφ(ω, x; η|ξ ∨ ζ) ≥ Γφ(ω, x; ξ|ζ). □

In the theory of deterministic dynamical systems, a measure-theoretic dynamical system
(Y,B, ν, g) is said to be a factor of (X,A, µ, f) if there is a measure preserving map π :
(X,A, µ) → (Y,B, ν) such that the following diagram is commutative µ-almost everywhere:

Figure 1
It is proved that, whenever (X,A, µ, f) and (Y,B, ν, g) are Lebesgue spaces, if g is a factor of
f via the measurable map π : X → Y such that card(π−1{y}) is finite for ν-almost every y
in Y then hµ(f) = hν(g) [15].

A similar result is formulated and proved for random dynamical systems in [15]. We
formulate and state a local version of the invariance of entropy for factors.

Proposition 3.5. Let φ : (Ω,F ,P) → C(X,X) defined by ω 7−→ φω and ψ : (Ω,F ,P) →
C(Y, Y ) defined by ω 7−→ ψω be two random dynamical systems over (Ω,F ,P, θ). Assume
that there exists a family of measurable maps {πω : X → Y }ω∈Ω such that, for every ω ∈ Ω,
the following diagram is commutative:

Figure 2
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where Π : Ω×X → Ω× Y , (ω, x) 7−→ (ω, πω(x)) is a measurable map. Then, for every finite
measurable partition ξ of Ω× Y , we have

J r
ψ(·, ·; ξ) ◦Π = J r

φ(·, ·; Π−1(ξ)),

or equivalently, the following diagram is commutative:

Figure 3

Proof. Let Φ and Ψ be the corresponding skew products of φ and ψ respectively. Since
the diagram in Figure 2 is commutative, we have Ψ ◦ Π = Π ◦ Φ. Let D ∈ F × BY and
(ω, x) ∈ Ω×X. We have

γψ(ω, πω(x), D) = lim sup
n→+∞

1

n
card({0 ≤ j ≤ n− 1 : ψjω(πω(x)) ∈ Dθj(ω)})

= lim sup
n→+∞

1

n

n−1∑
j=0

χD(Ψ
j(ω, πω(x)))

= lim sup
n→+∞

1

n

n−1∑
j=0

χD((Ψ
j ◦Π)(ω, x))

= lim sup
n→+∞

1

n

n−1∑
j=0

χD((Π ◦ Φj)(ω, x))

= lim sup
n→+∞

1

n

n−1∑
j=0

χΠ−1(D)((Φ
j)(ω, x))

= γφ(ω, x,Π
−1(D)).

Therefore, given any measurable partition ξ of Ω× Y , we conclude that

(3.3) Γψ(ω, πω(x); ξ) = Γφ(ω, x; Π
−1(ξ)).
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Replacing ξ by
∨n−1
j=0 Ψ

−j(ξ) in (3.3), we will have

Jψ(ω, πω(x); ξ) = lim sup
n→+∞

1

n
Γψ(ω, πω(x);

n−1∨
j=0

Ψ−j(ξ))

= lim sup
n→+∞

1

n
Γφ(ω, x; Π

−1(
n−1∨
j=0

Ψ−j(ξ))

= lim sup
n→+∞

1

n
Γφ(ω, x;

n−1∨
j=0

Π−1(Ψ−j(ξ))

= lim sup
n→+∞

1

n
Γφ(ω, x;

n−1∨
j=0

Φ−j(Π−1(ξ))

= Jφ(ω, x; Π−1(ξ)).

This completes the proof. □

Now, we are ready to show that the map J r
φ(·, ·; ξ) is indeed a local entropy map.

Theorem 3.6. For any µ ∈ IP(φ) we have:

hrµ(φ) = sup
ξ

∫
Ω×X

J r
φ(ω, x; ξ)dµ(ω, x)

where the supremum is taken over all finite measurable partitions of Ω×X.

Proof. First, let µ ∈ EP(φ). Let A ∈ F × BX , then by Birkhoff ergodic theorem,

γφ(ω, x,A) = lim sup
n→∞

1

n
card({0 ≤ j ≤ n− 1 : φjω(x) ∈ Aθj(ω)})

= lim sup
n→∞

1

n

n−1∑
j=0

χA
θj(ω)

(φjω(x))

= lim sup
n→∞

1

n

n−1∑
j=0

χA(θ
j(ω), φj(x))

= lim sup
n→∞

1

n

n−1∑
j=0

χA(Φ
j(ω, x))

=

∫
Ω×X

χAdµ = µ(A)(3.4)

for P.a.e. ω ∈ Ω.
For any finite measurable partition ξ of Ω×X, (3.4) results in

(3.5) Γφ(ω, x; ξ) = Hµ(ξ)

for P.a.e. ω ∈ Ω.
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For n ≥ 1, replacing ξ by
∨n−1
i=0 (Φ

i)−1ξ in (3.5), there exist a P-measurable set Λn ⊂ Ω×X
with µ(Λn) = 1 and

(3.6) 1

n
Γφ(ω, x;

n−1∨
i=0

(Φi)−1ξ) =
1

n
Hµ(

n−1∨
i=0

(Φi)−1ξ)

for (ω, x) ∈ Λn.
Set Λ :=

∩∞
n=1 Λn. Then µ(Λ) = 1 and (3.6) holds for any (ω, x) ∈ Λ. Letting n → ∞ in

(3.6), we conclude that
Jφ(ω, x; ξ) = hµ(φ, ξ)

for any (ω, x) ∈ Λ. Therefore,

(3.7) J r
φ(ω, x; ξ) = hµ(Φ, ξ)− hP(θ)

for any (ω, x) ∈ Λ.
Integrating both sides of (3.7), we will have:

(3.8)
∫
Ω×X

J r
φ(ω, x; ξ)dµ(ω, x) =

∫
Λ
J r
φ(ω, x; ξ)dµ(ω, x) = hµ(Φ, ξ)− hP(θ).

Now, let in general, µ ∈ IP(φ). Let µ =
∫
EP(φ)

νdτ(ν) be the ergodic decomposition of µ.
Applying (3.8) and Jacob’s theorem, we will have:∫

Ω×X
J r
φ(ω, x; ξ)dµ(ν, x) =

∫
Ω×X

Jφ(ω, x; ξ)dµ(ω, x)− hP(θ)

=

∫
EP(φ)

(∫
Ω×X

Jφ(ω, x; ξ)dν(ω, x)
)
dτ(ν)− hP(θ)

=

∫
EP(φ)

hν(Φ, ξ)dτ(ν)− hP(θ)

= hµ(Φ, ξ)− hP(θ).

Finally, the result follows by taking supremume over all measurable partitions ξ of Ω×X and
the Abramov-Rokhlin theorem. □

4. Discussion and concluding remarks

Local entropies are applied in multifractal analysis to characterize dynamical systems [4,
22, 23, 33]. It studies the dimensional properties of the level sets of certain functions like
local entropies, using either Hausdorff dimension or topological entropy in the sense of Bowen
[9, 21].

Local entropies may also be applied to measure the amount of information generated by a
system in a certain area of the space rather that the whole space. As an example, one may
see the definition of information content of a molecular structure via local entropies in [24].

As in the entropy theory of classical dynamical systems, we presented a local view to the
concept of entropy of random dynamical systems. We introduced a map J r

φ(·, ·; ξ) : Ω×X → R
which plays the role of a local entropy for the random dynamical system φ over (Ω,F ,P, θ), in
the sense that, the entropy of the random dynamical system φmay be extracted by integrating
the introduced map J r

φ(·, ·; ξ).
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