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1. Introduction
A matrix A is called nonnegative if all its entries are nonnegative. The nonnegative

inverse eigenvalue problem (NIEP) asks for necessary and sufficient conditions on a list
σ = (λ1, λ2, . . . , λn) of complex numbers in order that it be the spectrum of a nonnega-
tive matrix. In this case, one says that σ is realizable and a nonnegative matrix A with
spectrum σ is said to realize σ and it is referred to as a realizing matrix. There is a right
and a left eigenvector associated with the Perron eigenvalue with nonnegative entries. The
spectral radius of the nonnegative matrix A is denoted by ρ(A). In addition sk the k-th power
sum of the eigenvalues λi and in the list σ = (λ1, λ2, . . . , λn), λ1 is the Perron element. Some
necessary conditions on the list of complex numbers σ = (λ1, λ2, . . . , λn) to be the spectrum
of a nonnegative matrix are listed below.
(1) The Perron eigenvalue max{|λi|;λi ∈ σ} belongs to σ (Perron�-Frobenius Theorem).
(2) The list σ is closed under complex conjugation.
(3) sk =

∑n
i=1 λ

k
i ≥ 0.

(4)smk ≤ nm−1skm for k,m = 1, 2, . . . (JLL inequality)[3,8].
A number of necessary conditions for realizability are known, as well as a number of suf-

ficient conditions. In many cases, sufficiency is established by the direct construction of a
realizing matrix [1-6].

In terms of n, complete solutions to the NIEP are available only for n ≤ 4. Nazari and
Sherafat in [14] tried to introduce a recursive method for solving (NIEP). They solved different
cases for state n = 5 and their recursive method can also be used for case n > 5. Although
they found a nonnegative matrix for many cases of σ, we can say that complete solution for
this problem when n ≥ 5 is an open problem.
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For the case of non-real spectra σ for n = 4, complete solutions are available through
work of Laffey and Meehan [5](see Meehan�s 1998 doctoral thesis (National University of
Ireland, Dublin [12])) and, independently, that of Torre-Mayo, Abril-Raymundo, Alarcia-
Estevez, Marijuan and Pisanero by analyzing coefficients of the characteristic polynomial.
EBL digraphs [11]. Oscar Rojo, Ricardo L. Soto found a necessary and sufficient condition
for σ = {λ1, λ2, ..., λn} to be the spectrum of some circulant nonnegative matrix [13]. In [10]
Helena S̆migoc started with a realizable list of real numbers and obtained a realizable list
that contains elements that are not real.

We start by Lemma 6 of paper from Helena S̆migoc in [2] and in section 2 bring Theorem
2.1 from [14] that is similar to S̆migoc’s Lemma and find some new condition to solve (NIEP)
for a given real list of σ. In section 3 we give some special sets of the spectrum and construct
a nonnegative matrix corresponding to them.

Lemma 1.1. Suppose B is an m×m matrix with canonical form J(B) that contains at least
one 1× 1 Jordan block corresponding to the eigenvalue c:

J(B) =

(
c 0
0 I(B)

)
,

let t and s, respectively, be the left and right eigenvector of B associated with the 1 × 1
Jordan block in the above canonical form. Furthermore, we nornmalize vectors t and s so
that tT s = 1. Let J(A) be a Jordan canonical form for an n× n matrix

A =

(
A1 a
bT c

)
where A1 is an (n− 1)× (n− 1) matrix and a and b are vectors in Cn−1. Then the matrix

C =

(
A1 atT

sbT B

)
has Jordan canonical form

J(C) =

(
J(A) 0
0 I(B)

)
.

2. Construction of nonnegative matrix with spectrum of two special nonnegative
matrices

Theorem 2.1. Let B be an m × m nonnegative matrix and M1 = {µ1, µ2, . . . , µm} be its
eigenvalues and µ1 be Perron eigenvalue of B. Assume A be an n× n nonnegative matrix in
following form

A =

(
A1 a
bT µ1

)
,

where A1 is an (n− 1)× (n− 1) matrix and a and b are arbitrary vectors in Cn−1 and M2 =
{λ1, λ2, . . . , λm} is the set of eigenvalues of A. Then there exist the (m+n− 1)× (m+n− 1)
nonnegative matrix such that M = {µ2, . . . , µm, λ1, λ2, . . . , λm} is its eigenvalues.

Proof. Proof in [14]. □

We present a Corollary of the above Theorem, which can be used for problems that do
not require the existence of Perrron eigebvalue of the matrix B on the main diagonal of the
matrix A.
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Corollary 2.2. Let the conditions of Theorem 2.1 satisfy but matrix A is in the following
form:

A =

(
A1 a
bT αµ1

)
,

then there exists a nonnegative matrix C with the order of (m+ n− 1)× (m+ n− 1) as

C =

(
A1 as∗

sbT αB

)
,

such that the elements of M = {λ1, . . . , λn, αµ2, . . . , αµm} are its eigenvalues.

Proof. Proof is very similar of the Theorem 2.1. □

Remark 2.3. We can use the above Theorem for both symmetric and nonsymmetric ma-
trices. We illustrate this with two examples. It is easy to see that the nonnegative matrix

A =

 0 1 0

0 0 1

250 55 2

 has eigenvalues

 10

−4− 3 i

−4 + 3 i

 and the matrix B =

(
0 28

1 12

)
has

eigenvalues
(

14

−2

)
, with normalized Perron eigenvector s =

( 2√
5

1√
5

)
. In order to be able

to use the above theorem, we must create a nonnegative matrix whose its Perron eigenvalue
is equal 2, because this number is on the main diagonal of matrix A. Now let a =

(
0
1

)
and

bT =
(
250 55

)
then we see that 1

7B has eigenvalues
(

2

−2/7

)
. Then by above Theorem

the nonnegative matrix

C =

(
A1 as∗

sbT αB

)
=


0 1 0 0

0 0 1/4
√
2 1/4

√
14

125
√
2

2
55

√
2

4 0 2/7
√
7

125
√
14

2
55

√
14

4 2/7
√
7 12

7

 ,

is nonnegative matrix with eigenvslues


−2/7

10

−4− 3 i

−4 + 3 i

. It is easy to see that we can use

the above Theorem for symmetric matrices. The symmetric matrix A =

(
0

√
15

√
15 2

)

has eigenvalues
(

5

−3

)
and we choose the nonnegative 2 × 2 symmetric matrix as B =(

0
√
14

√
14 12

)
with eigenvalues

(
14

−2

)
and then the matrix 1

7B has eigemvalues
(

2

−2/7

)
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and the Perron eigenvalue of matrix 1
7B lies in main diagonal of matrix A and since the Perron

eigenvector of matrix 1
7B is

(
1/4

√
2

1/4
√
14

)
, then the following nonnegative symmetric matrix

(
A1 asT

saT αB

)
=

 0 1/4
√
15
√
2 1/4

√
15
√
14

1/4
√
15
√
2 0 2/7

√
7

1/4
√
15
√
14 2/7

√
7 12

7

 ,

has eigenvalues

 5

−3

−2/7

 .

Corollary 2.4. If we change the matrices A and C in corollary 2.2, in the following form:

A =

(
A1 a
bT α+ µ1

)
, C =

(
A1 as∗

sbT (αI +B)

)
,

then the set of M = {(µ2 + α), . . . , (µm + α), λ1, . . . , λn} is spectrum of nonnegative matrix
C.

Example 2.5. Consider the matrix of Remark (2.3) A =

 0 1 0

0 0 1

250 55 1 + 1

 with eigen-

values

 10

−4− 3 i

−4 + 3 i

, and by above Corolarry α = µ1 = 1 and B =

(
1/2 1/14

√
7

1/14
√
7 13

14

)

has eigenvalues
(

1

3/7

)
then αI + B =

(
3/2 1/14

√
7

1/14
√
7 27

14

)
has eigenvalues

(
2

10/7

)
and the Perron eigenvalue of matrix αI +B lies in main diagonal of matrix A and then

C =

(
A1 as∗

sbT (αI +B)

)
=


0 1 0 0

0 0 1/4
√
2 1/4

√
14

125
√
2

2
55

√
2

4 3/2 1/14
√
7

125
√
14

2
55

√
14

4 1/14
√
7 27

14


has eigenvalues 

10
7

10

−4− 3 i

−4 + 3 i


Theorem 2.6. Assume B is an m×m nonnegative diagonal matrix and M1 = {µ1, µ2, . . . , µm}
is set of its eigenvalues and µi and µj are two arbitrary elements of M , without loss of gen-
eralization of the problem, let i = 1 and j = 2. Take A as an n × n nonnegative matrix as
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follows

A =

 A1 a1 a2
bT1 0 0
bT2 0 0

 ,

where A1 is an (n− 2)× (n− 2) matrix and a1, a2, b1 and b2 are arbitrary vectors in Cn−2. If
M2 = {λ1, λ2, . . . , λn} be the set of eigenvalues of A, then there exists a (3m+n− 4)× (3m+
n− 4) nonnegative matrix, such that M = {µ3, . . . , µm, µ3, . . . , µm, λ1, . . . , λn, 0, . . . , 0︸ ︷︷ ︸

m times

} is its

spectrum.

Proof. Assume vectors s and t are orthonormal eigenvectors associated to eigenvalues µ1 and
µ2, respectively. By Schur decomposition theorem, there exists the unitary matrix Y such
that Y ∗BY = TB = B. Now we partition the matrix Y and Y ∗ in the following form,

Y =
(
s t T

)
and Y ∗ =

 s∗

t∗

T ∗


where T is m× (m− 2) matrix and s and t are m× 1 vectors and it is obvious that,

Y Y ∗ = ss∗ + tt∗ + TT ∗ = Im,

Y ∗Y =

 s∗s s∗t s∗T
t∗s t∗t t∗T
T ∗s T ∗t T ∗T

 =

 1 0 0
0 1 0
0 0 Im−2

 (2.5)

from the above relation we have,

Y ∗BY =

 µi 0 ⋆
0 µj ⋆

0 0 T̂B

 = TB (2.5)

T̂B is a diagonal matrix with set of {µ3, . . . , µm} in its main diagonal. By Schur decomposition
Theorem, there exist an unitary matrix X, such that X∗AX = TA, is an upper triangular
matrix with the elements M2 in its main diagonal. The matrices X and X∗ are partitioned
as below,

X =

 V
K
L

 and X∗ =
(
V ∗ K∗ L∗ ) ,

where the order of matrix V is (n− 2)× n and the order of K and L are both 1× n, since X
is a unitary matrix, we have,

XX∗ =

 V V ∗ V K∗ V L∗

KV ∗ KK∗ KL∗

LV ∗ LK∗ LL∗

 =

 In−2 0 0
0 1 0
0 0 1

 ,

X∗X = V ∗V +K∗K + LL∗ = In.

(2.7)

By (2.7) and X∗AX = TA, we have,

TA = V ∗A1V +K∗bTV + L∗bT2 V + V ∗a1K + V ∗a2L. (2.8)
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We consider matrices Z and Z∗ and nonnegative matrix C with (3m+ n− 4)× (3m+ n− 4)
dimension in the following form,

Z =


V 0 0 0
sK ts∗ 0 T
tL st∗ T 0
0 T ∗ 0 T

 , Z∗ =


V ∗ K∗s∗ L∗t∗ 0
0 st∗ ts∗ T
0 0 T ∗ 0
0 T ∗ 0 0

 ,

C =


A1 a1s

∗ a2t
∗ 0

sbT1 TT ∗B 0 0
tbT2 0 TT ∗B 0
0 0 0 0

 .

Using the relations (2.5) and (2.7), it is easy to show that Z is a unitary matrix. Now by the
relations (2.5)-(2.8), we can calculate Z∗CZ,

Z∗CZ =
V ∗A1V +K∗bTV + L∗bT2 V + V ∗a1K + V ∗a2L 0 0 0

0 0 0 0
0 0 T ∗BT 0
0 0 0 T ∗BT

 =


TA 0 0 0
0 0 0 0

0 0 T̂B 0

0 0 0 T̂B

 = TC ,

TC is an upper triangular matrix and the elements of its main diagonal are the elements of set
of M . On the other hand by the relation above C and TC are similar, then C is the matrix,
we were to find, and the proof is completes. □
Corollary 2.7. Let the conditions of Theorem 2.5 satisfy, then there exist (3m + n − 4) ×
(3m+ n− 4) nonnegative matrix, that

M = {αµ3 + δ, . . . , αµm + δ, βµ3 + δ, . . . , βµm + δ, γλ1, . . . , γλn, 0, . . . , 0︸ ︷︷ ︸
m times

}

is its spectrum, where α, β, δ and γ are arbitrary nonnegative real numbers.

Proof. The nonnegative matrix C is as the following form:

C =


γA1 γa1s

∗ γa2t
∗ 0

γsbT1 αTT ∗B + δI 0 0
γtbT2 0 βT ∗TB + δI 0
0 0 0 δT ∗T

 ,

and it is a solution of the problem. Note that in this Corollary, we construct a unitary matrix
for the matrices A,B and C which is the same as Theorem 2.5. □

3. Special cases of NIEP of order n

Theorem 3.1. Assume σ = {λ1, . . . , λn}, such that the elements of σ are real numbers and
σ has only one real positive number λ1. Let σ satisfies in the following conditions,

λ1 + λ2 + . . .+ λn ≥ 0. (3.1)

Then there exist the nonnegative matrix of order n, such that σ is its spectrum.
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Proof. Although Suleimanova solved in [7] this problem in 1949 with a companion matrix, we
want to find another solution here. We provide proof by induction.. Let n = 2, in this case
the nonnegative matrix

A =

(
0 −λ1λ2

1 λ1 + λ2

)
(3.2)

is solution of the problem.
Assume n = 3, put σ1 = {λ1, λ2}, it is clear that σ1 satisfies in the conditions of theorem,
so that σ1 is spectrum of the matrix (3.2). Let σ2 = {λ1 + λ2, λ3}, by the relation (3.1), we
have,

(λ1 + λ2 > 0, λ3 ≤ 0) or (λ1 + λ2 = 0, λ3 = 0), (3.3)

then λ1 + λ2 ≥ |λ3|. (3.4)

The relations above show that σ2 satisfies in the conditions of theorem and by the case of
n = 2, σ2 is the spectrum of 2× 2 nonnegative matrix,

B =

(
0 −(λ1 + λ2)λ3

1 λ1 + λ2 + λ3

)
.

Consequently by (3.4), λ1 + λ2 is Perron eigenvalue of nonnegative matrix B. It is easy to
show that the right orthonormal eigenvector associated with the Perron eigenvalue of B is

s =

 −λ3√
1+λ2

3
1√
1+λ2

3

 ,

because of the Perron eigenvalue of B is placed on the main diagonal of nonnegative matrix
A, then matrices A and B satisfy in theorem 2.1, therefore the nonnegative matrix

C =


0 λ1λ2λ3√

1+λ2
3

−λ1λ2√
1+λ2

3
−λ3√
1+λ2

3

0 −(λ1 + λ2)λ3

1√
1+λ2

3

1 λ1 + λ2 + λ3

 (3.5)

has spectrum of σ = {λ1, λ2, λ3}.
Now assume problem holds for n− 1, in order to construct a n× n nonnegative matrix with
the set of eigenvalues σ = {λ1, λ2, . . . , λn}, we have to do the following process.
Let σ1 = {λ1, λ2, . . . , λn−1} and λ = λ1 + λ2 + . . . , λn−2 then by relation (3.1) we have

(λ > 0 , λn−1 ≤ 0) or (λ = 0, λn−1 = 0), and thenwe have
λ ≥ |λn−1|.

So that, σ1 satisfies in the conditions of our theorem, by the hypothesis of induction we can
construct the (n−1)× (n−1) nonnegative matrix A with spectrum of σ1. By (3.2) and (3.5),
the nonnegative matrix A is as the following form,

A =

(
A1 a
bT λ+ λn−1

)
,

where A1 is (n−2)× (n−2) matrix and a and b are the vectors with dimension of (n−1)×1.
Let λ′ = λ+ λn−1, by (3.1) we have λ′ ≥ |λn|, then by the case of n = 2 there exist the 2× 2
nonnegative matrix B, with spectrum σ2 = {λ′, λn} in the following form

B =

(
0 −λ′λn

1 λ′ + λn

)
.
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It is clear that λ′ is Perron eigenvalue of nonnegative matrix B and orthonormal eigenvector
corresponding to λ′ is

s =

 −λn√
1+λ2

n
1√
1+λ2

n

 .

The nonnegative matrices A and B are satisfied on theorem 2.1. then the nonnegative matrix,

C =

(
A1 as∗

sbT B

)
,

with spectrum σ = {λ1, λ2, . . . , λn} is a solution of our problem. □

Theorem 3.2. Assume σ = {λ1, λ2, . . . , λn} and n ≥ 3. If λ1 be positive real number and
λ2 and λ3 be pair complex numbers and the other elements of σ be negative or zero real
numbers and the conditions (3.1) and (3.2) satisfy and furthermore elements of σ satisfy in
the following condition,

α1 = λ1λ2 + λ1λ3 + |λ2|2 ≤ 0.

Then there exists an n× n nonnegative matrix such that σ is its spectrum.

Proof. We prove by induction on n. For n = 3, the following nonnegative matrix,

A =

 0 λ1λ2λ3 0
0 0 1
0 −α1 λ1 + λ2 + λ3

 ,

is a solution of the problem.
Assume the proposition for n−1 satisfies, then so as to construct on n×n nonnegative matrix
with spectrum σ = {λ1, . . . , λn}, we can use the process of Theorem 3.1. □

Theorem 3.3. Assume σ = {λ1, . . . , λn}, such that σ has only one negative number λ2 and
other elements of it, are nonnegative real numbers, furthermore assume the conditions (3.1)
and (3.2) satisfy, then there exists an n× n nonnegative matrix, such that σ is its spectrum.

Proof. If n = 2, the 2× 2 nonnegative matrix (3.3) is a solution of this problem. If n > 2, we
consider the following matrix,

C =

(
A 0
0 B

)
,

where A is the matrix of (3.3) and B is nonnegative diagonal matrix of n − 2 order in the
following form,

B = diag(λ3, . . . , λn)

consequently C is solution of the problem. □

Example 3.4. σ1 = {λ1, λ2, λ3, λ4}, µ =
√
1 + λ2

3, β =
√
1 + λ2

4

A1 =


0 λ1λ2λ3

µ
λ1λ2λ4

µβ
−λ1λ2
µβ

−λ3
µ 0 (λ1+λ2)λ3λ4

β
−(λ1+λ2)λ3

β
−λ4
µβ

−λ4
β 0 −(λ1 + λ2 + λ3)λ4

1
µβ

1
β 1 λ1 + λ2 + λ3 + λ4


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σ2 = {λ1, λ2, λ3, λ4, λ5},γ =
√
1 + λ2

5

A2 =


0 λ1λ2λ3

µ
λ1λ2λ4

µβ
λ1λ2λ5

µβγ
−λ1λ2

µβγ
−λ3

µ 0 (λ1+λ2)λ3λ4

β
(λ1+λ2)λ3λ5

βγ
−(λ1+λ2)λ3

βγ
−λ4

µβ
−λ4

β 0 (λ1+λ2+λ3)λ4λ5

γ
−(λ1+λ2+λ3)λ4

γ
−λ5

µβγ
−λ5

βγ
−λ5

γ 0 −(λ1 + λ2 + λ3 + λ4)λ5
1

µβγ
1
βγ

1
γ 1 λ1 + λ2 + λ3 + λ4 + λ5

 ,

σ3 = {λ1, λ2, λ3, λ4, λ5, λ6},η =
√
1 + λ2

5, λ = λ1 + λ2 + λ3, λ′ = λ+ λ4 + λ5

A3 =



0 λ1λ2λ3

µ
λ1λ2λ4

µβ
λ1λ2λ5

µβγ
λ1λ2λ6

µβγη
−λ1λ2

µβγη
−λ3

µ 0 (λ1+λ2)λ3λ4

β
(λ1+λ2)λ3λ5

βγ
(λ1+λ2)λ3λ6

βγη
−(λ1+λ2)λ3

βγη
−λ4

µβ
−λ4

β 0 λλ4λ5

γ
λλ4λ6

γη
−λλ4

γη
−λ5

µβγ
−λ5

βγ
−λ5

γ 0 (λ+λ4)λ5λ6

η
−(λ+λ4)λ5

η
−λ6

µβγη
−λ6

βγη
−λ6

γη
−λ6

η 0 −λ′λ6
1

µβγη
1

βγη
1
γη

1
η 1 λ′ + λ6


.

We select the next example from [15] and try to find a nonsymmetric nonnegative matrix
for the given σ.

Example 3.5. Assume given
σ = {λ1 = 15, λ2 = −1, λ3 = −2, λ4 = −3, λ5 = −4, λ6 = −5},

since λ2, λ3, λ4, λ5, λ6 ≤ 0 and Σ6
i=1λi ≥ 0 then by Theorem (3.1) we construct a solution

for σ. At first it is easy to see that the symmetric matrix C1 =

(
0 15

1 14

)
has eigenvalues(

15

−1

)
and the matrix B =

(
0 28

1 12

)
has eigenvalues

(
14

−2

)
, with normalized Perron

eigenvector s =

( 2√
5

1√
5

)
, then let a =

(
15
)

and b =
(
1
)

then the 3× 3 following matrix

C2 =

(
A2 as∗

sbT B

)
=

 0 6
√
5 3

√
5

2/5
√
5 0 28

1/5
√
5 1 12

 ,

has eigenvalues  15

−2

−1

 ,

and it is necessary to mention that the member (3, 3) of the matrix C1 is equal to 12, and

this makes it possible to continue the algorithm. Again the matrix B =

(
0 36

1 9

)
has

eigenvalues
(

12

−3

)
with normalazed Perron eigenvaector s =

(
3/10

√
10

1/10
√
10

)
, in this case
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a =

(
3
√
5

28

)
and b =

(
1/5

√
5

1

)
so that

C3 =

(
A2 as∗

sbT B

)
=


0 6

√
5 9/2

√
2 3/2

√
2

2/5
√
5 0 42

5

√
10 14

5

√
10

3/10
√
2 3/10

√
10 0 36

1/10
√
2 1/10

√
10 1 9

 ,

has eigenvalues 
15

−3

−2

−1

 .

With continue this method we have

C4 =



0 6
√
5 9/2

√
2 6

17

√
2
√
17 3

34

√
2
√
17

2/5
√
5 0 42

5

√
10 56

85

√
10
√
17 14

85

√
10
√
17

3/10
√
2 3/10

√
10 0 144

17

√
17 36

17

√
17

2
85

√
2
√
17 2

85

√
10
√
17 4

17

√
17 0 36

1
170

√
2
√
17 1

170

√
10
√
17 1/17

√
17 1 5


with eigenvalues 

15

−4

−3

−2

−1


and finally with round the solution with 4 floating point, we have

C5 =



0.0 13.42 6.363 2.057 0.5047 0.1009

0.8944 0.0 26.56 8.591 2.106 0.4212

0.4242 0.9486 0.0 34.93 8.559 1.712

0.1372 0.3068 0.9701 0.0 35.30 7.062

0.03364 0.07519 0.2377 0.9805 0.0 25.0

0.006729 0.01504 0.04755 0.1961 1.0 0.0


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