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Abstract. In 1971 R. L. Carpenter proved that every derivation T on
a semisimple commutative Frechet algebra Λ with identity is continu-
ous. By relaxing the commutativity assumption on Λ and adding the
surjectivity assumption on T , we derive a corresponding continuity re-
sult, for a new concept of almost derivations on Frechet algebras in this
article. Also, it is further proved that every surjective almost derivation
T on non commutative semisimple Frechet Q-algebras Λ with an addi-
tional condition on Λ, is continuous. Moreover, an example is provided
to illustrate our main result.
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1. Introduction
We provide a brief outline of definitions and known outcomes in this

section. For more details, one may refer to [2, 7]. All vector spaces are
considered over the complex field, and we assume that all algebras are unital.
An Banach algebra Λ is a complete normed algebra, where a normed algebra
Λ is an algebra with a norm ||.||, which also satisfies ||p.q|| ≤ ||p||.||q||, for
all p, q ∈ Λ. An algebra with a Hausdorff topology is called a topological
algebra, if all algebraic operations are jointly continuous. The Jacobson
radical rad(Λ) of an algebra Λ is the intersection of all maximal right(or
left) ideals. An algebra is said to be semisimple, if rad(Λ) = {0}.

Definition 1.1. [2] The spectrum σΛ(p) of an element p of an algebra Λ is
the set of all complex numbers γ such that γ.1−p is not invertible in Λ. The
spectral radius rΛ(p) of an element p ∈ Λ is defined by rΛ(p) = sup{|γ| : γ ∈
σΛ(p)}.

If (Λ, ||.||) is a Banach algebra, then rΛ(p) = limn→∞ ||pn||
1
n . Also, for

any Banach algebra Λ, we have rad(Λ) = {p ∈ Λ : rΛ(pq) = 0, for every
q ∈ Λ}. See ([14], Lemma 1).
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Definition 1.2. Let Λ and Γ be two complete metrizable topological vector
spaces. Let T : Λ → Γ be a linear map. Then the separating space of T is
defined as the set
S(T ) = {q ∈ Γ : there exists (pn)

∞
n=1 in Λ such that pn → 0 and Tpn → q}.

Also, S(T ) is a closed linear subspace of Γ. Moreover, S(T ) = {0} if and
only if T is continuous, because of closed graph theorem. For a proof, see
([2], 5.1.2).
Lemma 1.3. ([14], Lemma 2) Let Λ be a Banach algebra, P (z) a polynomial
with coefficients in Λ and R > 0. Then

r2Λ(P (1)) ≤ sup
|z|=R

rΛ(P (z)). sup
|z|= 1

R

rΛ(P (z)).

A complete metrizable topological algebra is called an F -algebra. A
topological algebra Λ is said to be a LMC algebra, if its topology be in-
duced by a separating family of submultiplicative seminorms. A Frechet
algebra is a LMC algebra which is also an F -algebra. A Q-algebra is a
topological algebra in which the set of all invertible elements is open. A
metrizable LMC algebra is written in the form (Λ, (pn)

∞
n=1), where (pn)

∞
n=1

is a separating sequence and each pn is a submultiplicative seminorm (i.e.
pn(u.v) ≤ pn(u).pn(v), for all u, v ∈ Λ) satisfying pn(u) ≤ pn+1(u), for all
n ∈ N, and u ∈ Λ, in which the topology on Λ is induced by the seminorms
pn, n ∈ N. Also, a sequence (yk) in the Frechet algebra (Λ, (pn)) converges
to y ∈ Λ if and only if pn(yk − y) → 0, for every n ∈ N, as k → ∞. In a
Frechet Q-algebra, spectral radius of every element is a finite number, see
[7]. Every Banach algebra is a Frechet Q-algebra.
Remark 1.4. Let (Λ, (pn)) be a Frechet algebra, and Λn be the completion
of the quotient algebra Λ/ker pn, with respect to the norm pn

′
(y+ker pk) =

pn(y), y ∈ Λ, then Λn is a Banach algebra.
Definition 1.5. [6] Let Λ be an algebra. A linear map T : Λ → Λ is called
derivation, if T (µ.η) = µ.T (η) + T (µ).η, for all µ, η ∈ Λ.

Recently T.G. Honary et al introduced the concept of almost multiplica-
tive maps between Frechet algebras in [4]. Next, we introduce almost deriva-
tions on Frechet algebras.
Definition 1.6. Let (Λ, (pn)) be a Frechet algebra. A linear map T : Λ → Λ
is called almost derivation, if there are ϵn ≥ 0 such that pn(T (µ.η)−µ.T (η)−
T (µ).η) ≤ ϵnpn(µ) pn(η); for all n ∈ N, and µ, η ∈ Λ.
Remark 1.7. If ϵn = 0, for every n, then almost derivations on Λ turn out
to be derivations on Λ, because (pn) is a separating sequence of seminorms
on Λ. Also, every derivation is an almost derivation, for every ϵn ≥ 0.

A conjecture of Kaplansky[6] can be stated in the following question form.
Is every derivation on semisimple Banach algebra continuous?. Kaplan-
sky conjecture was proved by Johnson and Sinclair[5] in 1968. In 1971, R.
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L. Carpenter[1] proved that every derivation on a semisimple commutative
Frechet algebra with identity is continuous. There are some recent articles
[9, 10, 11, 12, 13] for automatic continuity of derivations in the theory of
topological algebras.

In this article, we prove that every surjective almost derivation T on
a semisimple Frechet Q-algebra (Λ, (pn)), with an additional condition on
(Λ, (pn)), is continuous.

2. main results
Theorem 2.1. Let (Λ, (pn)) be a semisimple Frechet algebra(not necessarily
commutative), and Λk be the completion of Λ/ker pk, with respect to the
norm pk

′
(y + ker pk) = pk(y), y ∈ Λ. If T : Λ → Λ is a surjective almost

derivation such that rΛk
(Tx + ker pk) ≤ pk(x), for all k ∈ N and x ∈ Λ,

then T is continuous.

Proof. Since closed graph theorem, for proving continuity of T , we have to
prove that b = 0 for every arbitrary sequence (τn)

∞
n=1 in Λ such that τn → 0,

and such that T (τn) → b. Let us begin with such a sequence (τn)
∞
n=1 and b.

Since T is onto, there exists a ∈ Λ such that Ta = b. We define Pn(z) =
zTτn+T (a− τn). Since for each y ∈ Λ, rΛk

(y+ ker pk) ≤ pk
′(y+ ker pk) =

pk(y), we have

rΛk
(Pn(z) + ker pk) ≤ pk(Pn(z))

≤ |z|pk(Tτn) + pk(b− Tτn).

By hypothesis, we also have

rΛk
(Pn(z) + ker pk) = rΛk

(T (zτn + a− τn) + ker pk)

≤ pk(zτn + a− τn)

≤ |z|pk(τn) + pk(a− τn).

By Lemma 1.3, we have

r2Λk
(b+ ker pk) = r2Λk

(Pn(1) + ker pk)

≤ sup
|z|=R

rΛk
(Pn(z) + ker pk). sup

|z|= 1
R

rΛk
(Pn(z) + ker pk)

≤ (Rpk(τn) + pk(a− τn))(
1

R
pk(Tτn) + pk(b− Tτn)),

for every fixed R > 0. We fix k and take n → ∞ to obtain

r2Λk
(b+ ker pk) ≤ pk(a).

1

R
pk(b).

Now, let R → ∞ to get rΛk
(b + ker pk) = 0, for each k and therefore

rΛ(b) = 0, because rΛ(b) = sup
k∈N

rΛk
(b + ker pk), see, for example, ([8],

Corollary 5.13).
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Let c ∈ Λ. Since (τn)
∞
n=1 is a sequence in Λ such that τn → 0, we have

pk(c.τn) ≤ pk(c).pk(τn) → 0, for all k ∈ N, as n → ∞. Let w = T (c). Since
T is an almost derivation, we have

pk(T (c.τn)− c.b) ≤ pk(T (c.τn)− c.T (τn)− T (c).τn)

+pk(c.T (τn) + w.τn − c.b)

≤ pk(T (c.τn)− c.T (τn)− T (c).τn)

+pk(c.T (τn)− c.b) + pk(w.τn)

≤ ϵkpk(c) pk(τn) + pk(c) pk(T (τn)− b) + pk(w.τn).

Since pk(T (τn)− b) → 0, pk(τn) → 0 and pk(w.τn) ≤ pk(w).pk(τn) → 0, for
all k ∈ N, as n → ∞, we have pk(T (c.τn)− c.b) → 0, for every k, and hence
T (c.τn) → c.b, when c.τn → 0. By the same argument mentioned at the
beginning of the proof, we have rΛ(c.b) = 0. Since c ∈ Λ is arbitrary, we
conclude this b ∈ rad(Λ) = {0}, and this proves the theorem. □

Corollary 2.2. Let (Λ, (pn)) be a semisimple Frechet Q-algebra. If T : Λ →
Λ is a surjective almost derivation with rΛ(Ta) ≤ rΛ(a), for all a ∈ Λ. Then
T is continuous.

Proof. We known that rΛ(x) ≤ pm(x), for some m ∈ N, and for all x ∈ Λ,
because Λ is a Q-algebra. See, for example, ([3], Theorem 6.18). Since
pk(x) ≤ pk+1(x), for all x, and k ∈ N, we have

rΛk
(Tx+ ker pk) ≤ rΛ(Tx) ≤ rΛ(x) ≤ pm(x) ≤ pk(x),

for all k ≥ m and x ∈ Λ. So, by Theorem 2.1, T is continuous. □

Corollary 2.3. Let Λ be a semisimple Banach algebra. If T : Λ → Λ is a
surjective almost derivation with rΛ(Ta) ≤ rΛ(a), for all a ∈ Λ, then T is
continuous.

Example 2.4. Let (Λ, (pn)) be a semisimple Frechet Q-algebra. A linear
map T : Λ → Λ is defined by T (a) = βa, for all a ∈ Λ where β ∈ (0, 1].
Since

pn(T (µ.η)− µ.T (η)− T (µ).η) = pn(βµ.η − µ.βη − βµ.η)

= pn(−βµ.η) ≤ | − β|pn(µ).pn(η),

for all µ, η ∈ Λ, hence T is an almost derivation but not a derivation on
(Λ, (pn)). Since Λ is a Q-algebra, there exists k ∈ N such that rΛ(a) =

limn→∞(pk(a
n))

1
n , for all a ∈ Λ. See, for example ([3], Theorem 6.18). So

rΛ(Ta) = rΛ(βa) = lim
n→∞

(pk((βa)
n))

1
n = |β| lim

n→∞
(pk(a

n))
1
n ≤ rΛ(a).

So, all hypothesis of Corollary 2.2 are satisfied and T is continuous.
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3. conclusion
R. L. Carpenter result motivates us to ask an open question: Is every sur-

jective almost derivation on semisimple Frechet algebras continuous? More-
over, a partial answer to this open question is derived in the sense that every
surjective almost derivation T on semisimple Frechet Q-algebras Λ, with an
additional condition on Λ, is continuous.
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