
Mathematical Analysis
& Convex Optimization

Vol. 3 (2022), No. 1, 37–41
https:\\ maco.lu.ac.ir
DOI: 10.52547/maco.3.1.4

Research Paper

CHARACTERIZING LEFT OR RIGHT CENTRALIZERS ON
⋆-ALGEBRAS THROUGH ORTHOGONAL ELEMENTS

HAMID FARHADI
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1. Introduction
Throughout this paper all algebras and vector spaces will be over the complex field C.

Let A be an algebra. Recall that a linear (additive) map φ : A → A is said to be a
right (left) centralizer if φ(ab) = aφ(b)(φ(ab) = φ(a)b) for each a, b ∈ A. The map φ
is called a centralizer if it is both a left centralizer and a right centralizer. In the case
that A has a unity 1, φ : A → A is a right (left) centralizer if and only if φ is of the
form φ(a) = aφ(1)(φ(a) = φ(1)a) for all a ∈ A. Also φ is a centralizer if and only if
φ(a) = aφ(1) = φ(1)a for each a ∈ A. The notion of centralizer appears naturally in C∗-
algebras. In ring theory it is more common to work with module homomorphisms. We refer
the reader to [16, 17, 23] and references therein for results concerning centralizers on rings
and algebras.

In recent years, several authors studied the linear (additive) maps that behave like ho-
momorphisms, derivations or right (left) centalizers when acting on special products (for
instance, see [3, 4, 8, 9, 10] and the references therein). An algebra A is called zero product
determined if for every linear space X and every bilinear map ϕ : A × A → X the following
holds: If ϕ(a, b) = 0 whenever ab = 0, then there exists a linear map T : A2 → X such
that ϕ(a, b) = T (ab) for each a, b ∈ A. If A has unity 1, then A is zero product deter-
mined if and only if for every linear space X and every bilinear map ϕ : A × A → X , the
following holds: If ϕ(a, b) = 0 whenever ab = 0, then ϕ(a, b) = ϕ(ab, 1) for each a, b ∈ A.
Also in this case ϕ(a, 1) = ϕ(1, a) for all a ∈ A. The question of characterizing linear maps
through zero products, Jordan products, etc. on algebras sometimes can be effectively solved
by considering bilinear maps that preserve certain zero product properties (for instance, see
[1, 2, 11, 12, 13, 14, 15, 18, 19]). Motivated by these works, Brešar et al. [5] introduced the
concept of zero product (Jordan product) determined algebras, which can be used to study
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linear maps preserving zero products (Jordan products) and derivable (Jordan derivable)
maps at zero point.

Let φ : A → A be a linear mapping on algebra A. A tempting challenge for researchers is
to determine conditions on a certain set S ⊆ A×A to guarantee that the property
(1.1) φ(ab) = aφ(b)

(
φ(ab) = φ(a)b

)
, for every (a, b) ∈ S,

implies that φ is a (right, left) centralizer. Some particular subsets S give rise to precise
notions studied in the literature. For example, given a fixed element z ∈ A, a linear map
φ : A → A satisfying (1.1) for the set Sz = {(a, b) ∈ A×A : ab = z} is called centralizer at z.
Motivated by [3, 9, 10, 18, 19] in this paper we consider the problem of characterizing linear
maps on special ⋆-algebras behaving like left or right centralizers at orthogonal elements for
several types of orthogonality conditions.

In this paper we consider the problem of characterizing linear maps behaving like right
or left centralizers at orthogonal elements for several types of orthogonality conditions on
⋆-algebras with unity. In particular, in this paper we consider the subsequent conditions on
a linear map φ : A → A where A is a zero product determined ⋆-algebra with unity or A is
a unital standard operator algebras on a Hilbert space H such that A is closed under adjoint
operation :

a, b ∈ A, ab⋆ = 0 =⇒ aφ(b)⋆ = 0;

a, b ∈ A, a⋆b = 0 =⇒ φ(a)⋆b = 0.

Let H be a Hilbert space. We denote by B(H) the algebra of all bounded linear operators
on H, and F (H) denotes the algebra of all finite rank operators in B(H). Recall that a
standard operator algebra is any subalgebra of B(H) which contains F (H). We shall denote
the identity matrix of B(H) by I.

2. Main results
We first characterize the centralizers at orthogonal elements on unital zero product deter-

mined ⋆-algebras.

Theorem 2.1. Let A be a zero product determined ⋆-algebra with unity 1 and φ : A→ A be
a linear map. Then the following conditions are equivalent:

(i) φ is a left centralizer;
(ii) a, b ∈ A, ab⋆ = 0 =⇒ aφ(b)⋆ = 0.

Proof. (i) ⇒ (ii) Since A is unital, it follows that φ(a) = φ(1)a for each a ∈ A. If ab⋆ = 0,
then

aφ(b)⋆ = a(φ(1)b)⋆ = ab⋆φ(1)⋆ = 0.

So (ii) holds.
(ii) ⇒ (i) Define ϕ : A × A → A by ϕ(a, b) = aφ(b⋆)⋆. It is easily checked that ϕ is a
bilinear map. If a, b ∈ A such that ab = 0, then a(b⋆)⋆ = 0. It follows from hypothesis that
aφ(b⋆)⋆ = 0. Hence ϕ(a, b) = 0. Since A is a zero product determined algebra, it follows that
ϕ(a, b) = ϕ(ab, 1) for each a, b ∈ A. Now we have

aφ(b⋆)⋆ = abφ(1)⋆

for each a, b ∈ A. By letting a = 1 we get
φ(b⋆)⋆ = bφ(1)⋆
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for each b ∈ A. Thus φ(b⋆) = φ(1)b⋆ for all b ∈ A and hence φ(a) = φ(1)a for all a ∈ A.
Hence φ is a left centralizer. □
Theorem 2.2. Let A be a zero product determined ⋆-algebra with unity 1 and φ : A→ A be
a linear map. Then the following conditions are equivalent:

(i) φ is a right centralizer;
(ii) a, b ∈ A, a⋆b = 0 =⇒ φ(a)⋆b = 0.

Proof. (i) ⇒ (ii) Since A is unital, it follows that φ(a) = aφ(1) for each a ∈ A. If a⋆b = 0,
then

φ(a)⋆b = (aφ(1))⋆ = φ(1)⋆a⋆b = 0.

So (ii) holds.
(ii) ⇒ (i) Define the bilinear map ϕ : A×A → A by ϕ(a, b) = φ(a⋆)⋆b. If a, b ∈ A such that
ab = 0, then (a⋆)⋆b = 0. By hypothesis φ(a⋆)⋆b = 0. So ϕ(a, b) = 0. Since A is a zero product
determined algebra, it follows that ϕ(a, b) = ϕ(ab, 1) = ϕ(1, ab) for each a, b ∈ A. Now

φ(a⋆)⋆b = φ(1)⋆ab

for each a, b ∈ A. By letting b = 1 we arrive at
φ(a⋆)⋆ = φ(1)⋆a

for each a ∈ A. Thus φ(a⋆) = a⋆φ(1) for all a ∈ A and hence φ(a) = aφ(1) for all a ∈ A,
giving us φ is a right centralizer. □
Remark 2.3. Every algebra which is generated by its idempotents is zero product determined
[6]. So the following algebras are zero product determined:

(i) Any algebra which is linearly spanned by its idempotents. By [20, Lemma 3. 2] and
[22, Theorem 1], B(H) is linearly spanned by its idempotents. By [22, Theorem 4],
every element in a properly infinite W ∗-algebra A is a sum of at most five idempotents.
In [21] several classes of simple C∗-algebras are given which are linearly spanned by
their projections.

(ii) Any simple unital algebra containing a non-trivial idempotent, since these algebras
are generated by their idempotents [4].

Therefore Theorems 2.1 and 2.2 hold for ⋆-algebras that satisfy one of the above conditions.
In the following, we will characterize the centralizers at orthogonal elements on the unital

standard operator algebras on Hilbert spaces that are closed under adjoint operation.
Theorem 2.4. Let A be a unital standard operator algebra on a Hilbert space H with dimH ≥
2, such that A is closed under adjoint operation. Suppose that φ : A → A is a linear map.
Then the following conditions are equivalent:

(i) φ is a left centralizer;
(ii) A,B ∈ A, AB⋆ = 0 =⇒ Aφ(B)⋆ = 0.

Proof. (i) ⇒ (ii) is similar to proof of Theorem 2.1.
(ii) ⇒ (i) Define ψ : A → A by ψ(A) = φ(A⋆)⋆. Then ψ is a linear map such that

A,B ∈ A, AB = 0 =⇒ Aψ(B) = 0.

Let P ∈ A be an idempotent operator of rank one and P ∈ A. Then P (I − P )A = 0 and
(I − P )PA = 0, and by assumption, we have

Pψ(A) = Pψ(PA) and ψ(PA) = Pψ(PA)
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So ψ(PA) = Pψ(A) for all A ∈ A. By [7, Lemma 1.1], every element X ∈ F (H) is a linear
combination of rank-one idempotents, and so
(2.1) ψ(XA) = Xψ(A)

for all X ∈ F (H) and A ∈ A. By letting A = I in (2.1) we get ψ(X) = Xψ(I) for all
X ∈ F (H). Since F (H) is an ideal in A, it follows that
(2.2) ψ(XA) = XAψ(I)

for all X ∈ F (H). By comparing (2.1) and (2.2), we see that Xψ(A) = XAψ(I) for all
X ∈ F (H) and A ∈ A. Since F (H) is an essential ideal in B(H), it follows that ψ(A) =
Aψ(I) for all A ∈ A. From definition of ψ we have φ(A⋆)⋆ = Aφ(I)⋆ for all A ∈ A. Thus
φ(A⋆) = φ(I)A⋆ for all A ∈ A and hence φ(A) = φ(I)A for all A ∈ A. Thus φ is a left
centralizer. □
Theorem 2.5. Let A be a unital standard operator algebra on a Hilbert space H with dimH ≥
2, such that A is closed under adjoint operation. Suppose that φ : A → A is a linear map.
Then the following conditions are equivalent:

(i) φ is a right centralizer;
(ii) A,B ∈ A, A⋆B = 0 =⇒ φ(A)⋆B = 0.

Proof. (i) ⇒ (ii) is similar to proof of Theorem 2.2.
(ii) ⇒ (i) Define ψ : A → A by ψ(A) = φ(A⋆)⋆. Then ψ is a linear map such that

A,B ∈ A, AB = 0 =⇒ ψ(A)B = 0.

Let P ∈ A be an idempotent operator of rank one and P ∈ A. Then AP (I − P ) = 0 and
A(I − P )P = 0, and by assumption, we arrive at ψ(AP ) = ψ(A)P for all A ∈ A. So
(2.3) ψ(AX) = ψ(A)X

for all X ∈ F (H) and A ∈ A. By letting A = I in (2.3) we have ψ(X) = ψ(I)X for all
X ∈ F (H). Since F (H) is an ideal in A, it follows that
(2.4) ψ(AX) = ψ(I)AX

for all X ∈ F (H). By comparing (2.3) and (2.4), we get ψ(A)X = ψ(I)AX for all X ∈ F (H)
and A ∈ A. Since F (H) is an essential ideal in B(H), it follows that ψ(A) = ψ(I)A for all
A ∈ A. From definition of ψ we have φ(A⋆)⋆ = φ(I)⋆A for all A ∈ A. Thus φ(A⋆) = A⋆φ(I)
for all A ∈ A and hence φ(A) = Aφ(I) for all A ∈ A implying that φ is a right centralizer. □

Finally, we note that the characterization of left or right centralizers through orthogonal
elements can be used to study local left or right centralizers.
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